Residential, Commercial and Industrial Technical Work Group Summary List of Recommended High Priority Mitigation Options **Note to TWG members**: The eleven policy option description templates that follow correspond to the 11 RCI options identified as high priority for further elaboration by the TWG during its call of June 18, and affirmed by the CAT during its meeting on August 7. Options text for RCI-1 through RCI-4 has been made ready for CAT review based on text and comments provided by TWG members following the call of July 25. Policy options RCI-6 and RCI-7 are being worked on in collaboration with the ES TWG and text is available in the ES policy options document (text from option ES-2 from the current version of that document is provided below for the RCI TWG's reference as RCI-6). TWG volunteer groups have provided input text for the remaining options RCI-5, and RCI-8-11. At present the text for options RCI-5, 8-11 that was NOT prepared by volunteers remains derived from entries in existing Washington RCI documents corresponding to the chosen options, including the Catalog of Options and the Options Summaries, plus comments and other materials received from TWG members. Plain text included in the policy option templates represents input by TWG and CAT members, either during calls or by e-mail. Text provided by TWG volunteers for these options is presented in yellow highlights, as is text for RCI-1 through 4 provided by volunteers in the "Type(s) of GHG Reductions" and "Estimated GHG Savings (in 2020) and Costs per MtCO₂e" sections of the template for some options. Text in [bracketed italics] is generic text from the Catalog and Options Summaries documents that is provided for reference only, and can be used, revised, or replaced as the TWG deems appropriate. Text in green highlights has been added by CCS either in response to or to relay CAT comments and suggestions provided during the August 7th CAT meeting. Following the affirmation of the direction of options RCI-1 through RCI-4 at the CAT meeting on August 7th, the CCS team with the support of TWG members will begin identifying data sources and quantifying costs and savings from those policy options. Note that, as in previous versions of these options descriptions, these are working drafts that will be continuously expanded and elaborated by TWG members. | # | Mitigation Option Name | Preliminary List of Drafting
Volunteers (point persons for
options denoted with underline
and an asterisk*) | |-------|--|--| | RCI-1 | Demand-Side Management (DSM) | Ash Awad, Bert Gregory, Bob | | | Energy Efficiency Programs, Funds, or | Stolarski* (PSE, for Cal Shirley) | | | Goals for Natural Gas, Propane, and Fuel | | | | Oil (originally 1.2) | | | # | Mitigation Option Name | Preliminary List of Drafting
Volunteers (point persons for
options denoted with underline
and an asterisk*) | |-------|--|--| | RCI-2 | Targeted Financial Incentives and
Instruments to Encourage Energy
Efficiency Improvements (Business
Energy Tax Credit and Private/Public
Efficiency Funds) (originally 1.3 and 1.5) | Ash Awad*, Nancy Hirsh, Bert
Gregory, Sara Kendall and/or
Anthony Chavez | | RCI-3 | Promotion and Incentives for Improved
Community Planning and Improved
Design and Construction (e.g. LEED,
NAHB, Green Globes, Architecture 2030,
and other guidelines) in the Private Sector
(originally 2.2 and 2.4) | Bert Gregory, Sara Kendall and/or Anthony Chavez* (Edie Sonne- Hall of Weyerhaeuser may assist in areas of overlap with Forestry options), Gregg Carrington (provisional), Amanda Eichel | | RCI-4 | Energy Efficiency Improvement in Existing Buildings, with Emphasis on Building Operations (originally 2.6) | Ash Awad, Nancy Hirsh*, Amanda Eichel | | RCI-5 | Rate structures and Technologies to
Promote Reduced GHG Emissions
(including Decoupling of Utility Sales and
Revenues) (originally 5.3) | Amanda Eichel, Anthony Chavez | | RCI-6 | Provide Incentives to Promote and
Reduction of Barriers to Implementation
of Renewable Energy Systems (originally
6.1) | John Ryan (through Energy
Supply), Aaron Adelstein, Anthony
Chavez | | RCI-7 | Provide Incentives and Resources to
Promote and Reduction of Barriers to
Implementation of Combined Heat and
Power (CHP, or "cogeneration") and
Waste Heat Capture, Including Net-
metering for Combined Heat and Power
(originally 6.2 and 5.2) | John Ryan (through Energy
Supply), Bob Stolarski, Anthony
Chavez | | RCI-8 | Consumer Education Programs, Including
Labeling of Embodied Life-cycle Energy
and Carbon Content of Products and
Buildings (originally 4.1 and 8.2) | Mo McBroom*, Anthony Chavez, Barb McGregor (DOE—nominated to assist during CAT meeting) (Edie Sonne-Hall of Weyerhaeuser may assist in areas of overlap with Forestry options) (Bert Gregory has provided input) | | # | Mitigation Option Name | Preliminary List of Drafting
Volunteers (point persons for
options denoted with underline
and an asterisk*) | |--------|--|--| | RCI-9 | Identify GHG Emissions Impacts and
Measures to Avoid, Minimize, or Mitigate
them for Projects Requiring Government
Review, and in Designing Government
Rules and Regulations (originally 7.7 and
7.8) | Mo McBroom, Kim Drury,
Amanda Eichel | | RCI-10 | More Stringent Appliance/Equipment/ Lighting Efficiency Standards, and Appliance and Lighting Product Recycling and Design (originally 3.1 and 8.1) | Mo McBroom, Chris Elwel, Kim
Drury | | RCI-11 | Policies and/or Programs Specifically
Targeting Non-energy GHG Emissions
(originally 7.4) | Aaron Adelstein, Kim Drury | # RCI-1. Demand-Side Management (DSM) Energy Efficiency Programs, Funds, or Goals for Natural Gas, Propane, and Fuel Oil **Straw Proposal Development Status:** Developed by TWG; Reviewed, Direction Affirmed by CAT on 8/7/2007 Based on RCI Catalog Option 1.2 ## **Mitigation Option Description** This policy is designed to use a number of different funding and incentive mechanisms to increase the investment in natural gas, propane (or liquefied petroleum gas—LPG), and fuel oil demand-side management programs. These DSM activities shall be designed to work in tandem with other strategies recommended by the CAT that also encourage energy efficiency gains in the residential, commercial and industrial sectors. #### **Mitigation Option Design** In order to implement DSM programs for natural gas and LPG/fuel-oil consumers, a number of funding and incentive mechanisms could be considered, analogs of many of which are in place for electric-sector DSM programs (including the recently enacted I-937¹), while other mechanisms are being considered by the CAT for this and other policy options. Candidate mechanisms for increasing the efficiency with which these fuels are used in the Residential, Commercial, and Industrial sectors include revising existing statutes to enable investments in energy efficiency, potentially including not only investments that are now cost-effective on the basis of fuel costs alone, but also eligible programs that are cost-effective when the value of avoided GHG emissions are considered. Key potential elements of this option follow. See the "Implementation Mechanisms" section below for additional possible tools for achieving the goals of this option: - I-937-like requirements for gas utilities to acquire all cost-effective energy efficiency; Initiative 937 requires that "Each qualifying [electric] utility shall pursue all available conservation that is cost-effective, reliable, and feasible." - For propane and fuel oil consumers, which are served largely by local distributors (and thus are part of a fundamentally different market than gas consumers) a surcharge and/or incentive fund could be established to fund DSM activities. - Requirements, surcharges and/or funds to provide incentives for natural gas customers not purchasing gas from utilities (including large-volume industrial customers, for example) to also acquire all cost-effective energy efficiency. ¹ Initiative 937, "The Energy Independence Act", "... requires large utilities to obtain fifteen percent of their electricity from new renewable resources such as solar and wind by 2020 and undertake cost-effective energy conservation." Text of the initiative can be found at http://www.secstate.wa.gov/elections/initiatives/text/i937.pdf. - A program such as Oregon's Business Energy Tax Credits system could be a useful tool to make more efficient use of natural gas, propane, and fuel oil. - A program of low-cost loans for efficiency improvements and to encourage performance contracting, as well as other financial options such as reinvestment funds should be considered to support energy efficiency investments. - Programs and incentives for natural gas and LPG/fuel oil efficiency improvement should be available and provide significant opportunities for efficiency improvement in all customer classes, with special emphasis on, for
example, low-income customers. - [A CAT member suggested that the TWG consider including some policies and implementation mechanisms designed to improve the efficiency of electricity use, as I-937 requirements may or may not provide the desirable level of GHG savings through electric energy efficiency. The member also noted the importance of software and metering hardware in helping to achieve electric energy efficiency targets.] **Goals:** Gas utilities should obtain 100 percent of cost-effective, achievable DSM savings in their service territories by the year 2020. DSM programs for LPG and fuel oil customers should be instituted so as to achieve a similar level of performance. - **Timing:** Apart from the overarching savings target mentioned above, the wide variety of potential implementation mechanisms will likely result in various implementation schedules for specific elements of this option. - Coverage of parties: All parties currently involved in energy policy, regulation and implementation plus the providers and users of these fuel sources. - Other: #### **Implementation Mechanisms** Additional potential implementation mechanisms and considerations for this option include the following: [Note: A CAT member requested that the TWG provide additional input, to the extent possible, on financing mechanisms for this and other RCI options. Another CAT member suggested that both incentives and well-designed markets should be considered when thinking about implementation mechanisms.] ## **Considerations in Program Design** - Analysis of DSM potential should be prepared to assist in directing the legislative and regulatory processes to set targets and fund programs. - High-volume transportation gas customers (those directly served by pipeline, rather than by utilities) should be required and provided with incentives to install efficiency measures. - Implementation/administration of efficiency programs may be carried out, as appropriate, by utility (including municipal utilities and cooperatives), state agency, or third-party actors. • Energy end-use surveys should be used to help determine efficiency potential and target DSM activities. ## **Program Options** - Subsidized energy audits for homeowners, businesses, and industries - Consumer education (see also RCI-8). - Focus on specific market segments that are often under-served by DSM programs (low income residential, small and medium businesses). - Energy efficiency reinvestment funds to provide capital for efficiency improvements in specific sectors - Incentives for specific technologies, potential including (but not limited to) white roofs/rooftop gardens/ landscaping, ground-source heat pumps, lighting, water heating, plug loads, networked personal computer management, power supplies, motors, pumps, boilers, customer-side transformers, water use reduction, appliance recycling/pick-up programs and others. - Incentives for customer-sited renewable electricity and heat including solar photovoltaic (PV), passive solar space heat, and solar water heat (SWH). (Renewable energy incentives will be covered in more detail in RCI-6 and other options.) - Incentives to convert fossil fuel based heating systems to biomass based heating systems, while also increasing the overall system efficiency. (Fuel-switching will likely be covered in other RCI-options as well.) ## Related Policies/Programs in Place #### **Integrated Resource Planning** In 2006, the Washington Legislature passed the Electric Utility Planning Act (ESHB 1010), requiring each consumer-owned or investor-owned electric utility, with more than 25,000 customers, to develop or update an integrated resource plan by September 2008. All plans are reviewed by CTED and must include an assessment of conservation and efficiency resources, an evaluation of renewable and nonrenewable generation, and recommendations for development of new policies and programs to obtain conservation and efficiency resources. The Northwest Power and Conservation Council (NPCC) 5th Plan calls for reduction of 2,800 MW in electricity consumption through conservation in the next 20 years (through 2025) in the Northwest. WA State consumes about 50% of the energy in the Northwest (based on WA population compared to the rest of the region). #### Type(s) of GHG Reductions [Insert text here] #### Estimated GHG Savings (in 2020) and Costs per MtCO₂e - Data Sources: Total use by fuel type, average efficiency by end use, and upgrade potential needed to assess savings potential. - Quantification Methods: Application of market factors such as user receptivity and energy management industry capacity will in part determine actual achievable potential. - **Key Assumptions:** TBD #### **Contribution to Other Goals** - Contribution to Long-term GHG Emission Goals (2035/2050): - **Job Creation:** As with the existing DSM efforts on the electric side, expanded efforts work create significant numbers of jobs throughout the market from manufacturing to installation. - Reduced Fuel Import Expenditures: Unknown #### **Key Uncertainties** Uncertainties include the rate of development of the markets to achieve efficiency installations for these fuel sources, including the rate of acceptance by end users, and the development of training and education programs to expand the capacity of the energy management industry. #### **Additional Benefits and Costs** Replacing aging boiler systems will also provide the added benefit of creating safer buildings, and therefore decrease insurance costs. In schools statewide a focus on replacing aging boiler systems with new, more efficient systems will also lead to a better more consistent standard of comfort, therefore an improved physical learning environment. ## **Feasibility Issues** DSM activities on the electric side indicate that there are no significant barriers to achieving significant savings results. Options RCI-5 ("Rate structures and Technologies to Promote Reduced GHG Emissions (including Decoupling of Utility Sales and Revenues)") could help to make actions/requirements related to natural gas energy efficiency more feasible by enabling utilities to recover costs and/or by decoupling sales from revenues. 7 ## **Status of Group Approval** **TBD** ## **Level of Group Support** **TBD** #### **Barriers to Consensus** **TBD** # RCI-2. Targeted Financial Incentives and Instruments to Encourage Energy Efficiency Improvements (Business Energy Tax Credit and Private/Public Efficiency Funds) **Straw Proposal Development Status:** Developed by TWG; Reviewed, Direction Affirmed by CAT on 8/7/2007 Based on RCI Catalog Options 1.3 and 1.5 ## **Mitigation Option Description** Targeted financial incentives and instruments, through two primary vehicles 1) business energy tax credits and 2) private/public efficiency funds, can be used as means of encouraging energy efficiency improvements that will affect the development, design, and building of new and existing energy-using systems in the RCI sectors. This option is designed to offer financial mechanisms to support and encourage energy-efficiency improvements in both entire buildings and in stand-alone energy systems. #### **Mitigation Option Design** Business energy tax credits and private/public efficiency funds are two key mechanisms for encouraging consumers in the residential, commercial, and industrial sectors, and the building sector professionals that serve them, to implement measures to improve the efficiency of new buildings and building energy systems, as well as the efficiency of existing buildings. As such, this option is designed to work in concert with options RCI-1 (DSM for gas, LPG, and propane users), RCI-3 (targeting building and community energy efficiency), and RCI-4 (focusing energy efficiency improvements in existing buildings and their operation). In addition, either or both of these mechanisms could apply to development of consumer-sited distributed renewable energy systems (see RCI-6/ES-2) and/or combined heat and power systems (see RCI7/ES-7). Brief descriptions of the business energy tax credit and private/public efficiency fund concepts are provided below. The section that follows suggests potential implementation mechanisms and other details for these concepts. Business Energy Tax Credits can provide incentives for businesses to invest in energy efficiency and/or customer-sited renewable energy systems. Washington lacks an income tax, but has business and occupations taxes, typically on gross receipts, that apply to a number of different categories of businesses; a business energy tax credit would be applied to these taxes. Applying these tax credits to both new construction and retrofit projects would be a goal. Specific types of tax credits for energy-efficiency/renewable energy applications in Washington might include • Energy Performance Contracting Sales Tax Exemption: Provide an exemption from retail sales taxes (~6.5%) for those projects electing energy savings performance contracting services. - Superior Energy Efficiency Sales Tax Exemption: Provide exemption from a portion of sales taxes to projects that produce buildings and other infrastructure (including, for example industrial process equipment) that have superior energy performance. - Clean Technology Businesses B&O Credit: Provide a B&O tax credit for businesses that deliver energy-efficiency-related services. The overarching intent of these tax credits would be to yield a nearly neutral revenue position for the State while reducing the use of fossil fuels and their climate change impact. Tax credits applied to energy efficiency or renewable energy projects will generate additional government revenues through increased local market activity and job creation, and through re-spending of energy cost savings. Public/Private Efficiency Funds would provide zero- or low- interest loans for energy efficiency applications in both retrofit and new construction, as well as in non-building
projects such as improvements in the efficiency of industrial processes. These loans would be used to fund the remaining portions of energy efficiency projects that are not addressed by utility rebates or business energy tax credits. Zero- or no-interest loans offer project developers and their professional service providers the opportunity to construct substantially more energy efficient projects within their budgets. Loans repayments can be made from of shared savings via energy performance contracting or through other mechanisms; public and private building or other energy-using infrastructure projects may use different repayment models. **Goals:** Provide funding mechanisms sufficient to support the energy efficiency and building energy use improvement goals of RCI-1, RCI-3 and RCI-4, including attaining new building energy efficiency goals consistent with Architecture2030, LEED, or other suitable "green building" energy efficiency certification. - **Timing:** Implement funding mechanisms so to support goals above. - Coverage of parties: Commercial and industrial energy users in the private and public sectors (including those responsible for mixed-use projects), public agencies, utilities, building design and construction professionals, and lenders. - Other: #### **Implementation Mechanisms** Specific implementation mechanisms for business tax credits might include: • Energy Performance Contracting Sales Tax Exemption: Provide an exemption from retail sales taxes (~6.5%) for those projects electing energy savings performance contracting services (RCW 39.35a) carried out on public buildings in the state, including schools, universities, community colleges, and state and local government buildings and energy savings performance contracting services in private buildings meeting the intent of RCW 39.35a. This exemption may also apply to non-building energy-efficiency projects. In a retrofit project the system energy use is clearly defined and therefore the tax credits should apply to the overall project for those projects improving energy efficiency by a minimum of 20% over the existing energy performance of a building or process. - Superior Energy Efficiency Sales Tax Exemption: On new construction in public and private buildings, or improvements in industrial energy-using equipment (for example), tax credits would be targeted at reducing the differential between the project costs for energy code rated systems (systems meeting or only modestly exceeding the level of energy performance required by codes) versus those systems that exceed the collective energy efficiency of the building or process by 20% over that of the energy code in effect at the time, to 1% of the total project construction costs for those projects that exceed the collective energy efficiency by 50% over that of the energy code in effect at the time, and to 2% of the total project construction costs for those projects that are net-zero buildings, meaning that they consume no more energy than they produce. [It may be desirable, following up on a suggestion by a CAT member, to consider guidelines and exemptions that provide similar incentives for non-building improvements] - Clean Technology Businesses B&O Credit: To compel job creation and the growth of clean technology businesses, a B&O tax credit will be provided to those businesses that deliver energy efficiency related services, to include professional services, construction services, and highly efficient products. This B&O credit will be applied to those business revenues associated with those projects and systems that also qualify for the retail sales tax credit. For **public/private efficiency funds**, low or no-interest loans would be used to fund the remaining portion of a project that is not addressed by utility rebates or a business energy tax credit. It is expected that this funding option would cover 30 to 70% of a total project costs. In new construction (or for new process equipment purchases), this fund would only be applicable to the differential between the project costs for energy code-rated systems versus those systems that exceed the collective energy efficiency of the building by 20% over that of the energy code in effect at the time. The State of Washington Treasurer's program does have both a COP and LOCAL loan program that provides tax-exempt financing to municipal and state entities. And many commercial financial institutions provide a variety of equipment and system tax-exempt and commercial grade lease-back options. Tax exempt interest, even at 4%, over a 10 year loan term reduces the possible energy efficiency project scope by up to 30%. Nearly 50% of the project scope is eliminated if commercial rates of 7.5% are used to finance energy efficiency projects. Therefore, a no-interest loan program would yield significantly more energy-efficiency project scope since public and private organizations that choose to secure outside financing will be able to direct more funds at projects improving energy efficiency versus interest charges. For public entities, the loan obligation could be guaranteed to be paid out of the annual energy savings through an energy savings performance contracting (ESPC) model. Legislation already exists that enables an ESPC delivery in existing building, and a minor modification to RCW 39.35a would allow for the use of ESPC in new construction projects and systems. There is precedent for the national and international adoption of the ESPC model. For instance, through the Clinton Climate Initiative Energy Efficiency Building Retrofit Program (C40) an international effort is in motion to leverage ESPC programs with public/private funding to complete \$5 billion in energy efficiency work internationally. For private entities the loan obligation could also be paid out of the annual energy savings through direct owner payment, micro-utility, a public/private resource management association (RMA,) a condominium association, or the energy savings performance contracting (ESPC) model. There are different potential models for the organizations that would coordinate public/private efficiency funds, including government agencies and not for profit independent organizations. ## **Related Policies/Programs in Place** #### Washington In 2005, the Washington legislature enacted the Renewable Energy System Cost Recovery (RCW 82.16.110) and Tax on Manufactures or Wholesalers of Solar Energy Systems. ## **Other States (provided for reference)** A business energy tax credit (BETC) scheme similar to the one being successfully implemented in Oregon would serve as a good model for Washington State. The combined spending on the BETC and RETC (residential energy tax credit) programs for 2003 totaled \$30.9 million for tax credits and program administration. The effect of these tax credits combined with spending by businesses and residences taking advantage of these tax credits had the following net impacts on the Oregon economy in 2003: - Output in Oregon's economy increased by \$42.5 million - 182 new jobs were created in Oregon - Oregon wages increased by \$8.6 million - Tax revenues for state and local government increased by \$2.7 million - Oregon commercial and residential energy costs decreased by \$27.9 million From http://www.oregon.gov/ENERGY/CONS/docs/EcoNW Study.pdf In Oregon, the tax credit is 35 percent of the eligible project costs - the incremental cost of the system or equipment that is beyond standard practice. You take the credit over five years: 10 percent in the first and second years and 5 percent each year thereafter. If you can't take the full tax credit each year, you can carry the unused credit forward up to eight years. Those with eligible project costs of \$20,000 or less may take the tax credit in one year. Trade, business or rental property owners who pay taxes for a business site in Oregon are eligible for the tax credit. The business, its partners or its shareholders may use the credit. The applicant must own or be the contract buyer of the project (the project owner). The business must use the equipment for the project or lease it for use at another site in Oregon. A project owner also can be an Oregon non-profit organization, tribe or public entity that partners with an Oregon business or resident who has an Oregon tax liability. This can be done using the Pass-through Option. Many projects qualify. They include: Conservation, Lighting, Recycling, Alternative Fuels, Hybrid Vehicles, Rental Dwelling Weatherization, Transportation, Efficient Truck Technology, Sustainable Building. The tax credit can cover all costs directly related to the project, including equipment cost, engineering and design fees, materials, supplies and installation costs. Tax credits can apply to retrofits, new buildings, co-generation projects, and renewable resource projects. There are a number of schemes currently being implemented, which bring together public and private investment to encourage energy efficiency in <u>new and old</u> buildings. Most 'efficiency funds' are being implemented on the local/city level but could be adapted to Washington State. Taking parts of each of the schemes may be the best approach for a state-wide fund. Using the Cambridge Energy Alliance as a model, form a independent non-profit that will assist residents, businesses and institutions and provide technical experts with figuring out what to do, finding the right people to do it and obtaining the funds to pay for energy efficiency programs, including low-interest loans that will be repaid out of documented energy savings. The fund could apply to retrofits, but also to new construction to help market driven projects achieve significantly higher levels of energy efficiency than the market will currently support. This organization could have a roster of banks that have bought into the idea that can provide low interest loans for energy efficient strategies and can be paid back
through the energy savings provided by the loan (as in the case of the Clinton Climate Initiative Energy Efficiency Retrofit program). As with both the CEA and the Toronto Atmospheric Fund, start-up money for an organization of this type could come from private sources or the sale of state owned land. #### **Type(s) of GHG Reductions** This initiative would yield GHG reductions from energy efficient buildings and systems both in electric and fossil fuel usage. The following provides a perspective on the amount of energy efficiency to be gained through these initiatives. [CCS Note: Typically this section of the template is used for a generic, qualitative description of the types of GHG reductions available from the option. Quantitative estimates of option cost and savings are typically presented in the template section that follows] The combination of these two financial incentives could yield [\$1.1] billion of highly efficient projects through 2020, presuming these financial mechanisms are in place starting in 2009. For every \$100 M of projects that occur on an annual basis due to these financial incentives it is assumed that with an average simple payback of 10 years there would be \$10 M per year of avoided energy costs. It is presumed based on typical project profiles that 50% of the energy saved would be related to natural gas, fuel oil, or propane and 50% would be related to electric energy. For basic math it is presumed that fossil fuel energy costs [\$XX/BTU] and electric energy costs [\$XX/BTU]. This leads to [XXXXXXX] BTU of fossil fuel savings and XXXXXXX of BTU of electric energy savings annually. These savings could be expected to be yielded on a nearly even basis statewide. ## Estimated GHG Savings (in 2020) and Costs per MtCO₂e [Ash note: This is my wild start to providing thoughts and some math on the next two sections. Lot's of guesstimating and holes that need to be filled. Hoping that SEI, CTED, IGC, et al, could help with filling in the numbers based on statewide averages or other means that may be being used in the creation of other TWG initiatives. Your edits and input is needed.] [CCS Note: The initial volunteer estimates and thoughts below on savings and costs of this option are expected to be augmented and elaborated over the coming months by CCS, working closely with the TWG] Based on [XXXXX BTU] of fossil fuel and [XXXXXX] electricity savings annually it would be expected that these initiative would yield the following GHG reductions from 2009 to 2020, with a majority of the reductions coming over the first 5 years based on the shear opportunity statewide. #### (Need to add GHG reduction math here.) As noted above [\$1.1 billion] of highly efficient projects and system work will be completed with these initiatives through 2020. And although [\$1.1] billion of projects will be completed the business tax impact would be approximately 8%, or \$60 to \$100 million. While the public/private funding program will only offset the interest associate of no more than 70% of the total projects, or \$700 million, which would yield a cost of approximately \$150 to \$200 million. Therefore the total cost of these initiatives would be as low as \$210 million to \$300 million. The cost per MtCO2e would be [\$X.X]. - Data Sources: - **Quantification Methods:** - Key Assumptions: #### **Contribution to Other Goals** - Contribution to Long-term GHG Emission Goals (2035/2050): - Provide financing strategies beyond what the private sector market will support today for long-term benefits - Job Creation: Ash Note: Can CTED or NWenergy help with this one? I recall some ratios of jobs to efficiency dollars spent. - Reduced Fuel Import Expenditures: ## **Key Uncertainties** [Insert text here] #### **Additional Benefits and Costs** Consider impact on government revenues and stimulation of economy though market creation #### **Feasibility Issues** The business tax exemption faces the typical challenges related to issuing a tax break, however since this initiative would generate projects, save energy costs in public facilities, and create jobs it is expected that a fiscal note (looking at all factors, not just lost tax revenue) would yield a positive economic impact to the State. Feasibility issues might lie in the public/private funding initiative that relies on public money to support private investments. This issue would need to be worked through appropriately. Important key element of this is to create mechanisms that allow payment of loans in both retrofit and new construction through the savings from energy efficiency for both public and private entities. Also, to make sure that Washington state law allows condominium associations and other entities to guarantee the loan, as well as allowing the formation of resource management associations, ESPC, and micro-utilities at the project level. It will be important to set the correct improvement benchmark to receive the economic incentive benefits. Having a sliding scale for greater efficiency will be very useful. ## **Status of Group Approval** **TBD** ## **Level of Group Support** **TBD** #### **Barriers to Consensus** **TBD** RCI-3. Promotion and Incentives for Improved Community Planning and Improved Design and Construction (e.g. LEED, NAHB, Green Globes, Architecture 2030, and other guidelines) in the Private Sector **Straw Proposal Development Status:** Developed by TWG; Reviewed, Direction Affirmed by CAT on 8/7/2007 Based on RCI Catalog Options 2.2 and 2.4 ## **Mitigation Option Description** Energy used in residential, commercial, and industrial buildings contributed roughly 20% of Washington's GHG emissions in 2005. As such, it is recommended that goals be set to encourage all new construction, both residential and commercial, to meet significantly higher energy efficiency standards in the near future. Efficiency standards should take into account all the energy required in the entire building process, including the amount of energy needed to make building materials along with the performance of the building through its use. This combination of building performance and embodied energy will produce a metric for life-cycle GHG emissions that designers and builders can look to improve upon. Improved community planning² aims to create communities that are, among other attributes, livable, designed for reduced use of energy both within homes and businesses and in the transport sector, and have a reduced environmental impact relative to typical developments. Variants on the smart growth concept exist, but many call for clustering living units with easy access (often walking distance) to shops, schools, and entertainment and recreational facilities, incorporating elements of energy efficient design and renewable energy in buildings, sharing energy facilities between buildings (for example, district heating systems), and preserving open spaces. These two concepts—significantly improved building energy performance and improved community planning—offer significant synergies for Washington. This policy suggests a combination if incentives and targets to induce the owners and developers of buildings and the communities in which they are located to produce and operate buildings and communities that produce markedly lower GHG emissions than existing buildings and communities.. ## **Mitigation Option Design** ## Improved Building Design and Construction This policy provides incentives and targets to induce the owners and developers of new and existing buildings in each of the RCI sectors to improve the efficiency with which energy and other resources are used in those buildings, along with provisions for raising targets periodically and providing resources to building industry professionals to help achieve the desired building ² See, for example, http://www.epa.gov/smartgrowth/about_sg.htm for additional information about Smart Growth. performance. This policy can include elements to encourage the improvement and review of energy use goals over time, and to encourage flexibility in contracting arrangements to encourage integrated energy- and resource efficient design and construction. Several design standards exist that can be drawn upon to promote improved design and community planning, including LEED³, Architecture 2030⁴, National Association of Home Builders (NAHB) Green Home Building Guidelines⁵, Built Green⁶, Energy Star Homes Northwest and Green Globes⁷. This policy could also include consideration of the concepts of embodied energy and "renewability" of building materials. ## **Improved Community Planning** Like construction of buildings and facilities themselves, land use decisions have a significant impact on regional and statewide greenhouse gas emission profiles. Research in California, NYC and elsewhere has begun to quantify this impact. California building energy researchers estimate that 10-15% of potential statewide reductions can be achieved through land use planning changes. New York City is estimating 15.6 million metric tons will be reduced through smart growth planning and design (accounting to approximately 30% of *their* total reduction strategy). Efficient community planning holds perhaps the greatest potential for future reductions of any mitigation strategy. Note that a key benefit of efficient community planning, depending on how it is carried out, can be significant reductions in transportation energy use (both passenger and goods transport). An option under consideration in the Transportation TWG, T-4, "Promote Compact and Transit-oriented Development", makes explicit recognition of this benefit. Potential design elements for this option, addressing, separately and together, these two major concepts, include the following (see "Implementation Measures" below for further details and possible approaches): - Create tax incentives for new and rehabilitated energy-efficient commercial and residential buildings, as well as new master planned
communities. - Tie state economic development funding to meeting building and community design standards. - Provide incentives that encourage and promote the use of climate friendly products in both commercial and residential buildings and building materials. - Support and provide incentives for programs that recognize embodied energy and operational energy in the building process. This would include using informational approaches, support for certifications, and other means to support the consideration of life-cycle emissions in the building sector. ³ See, for example, http://www.usgbc.org. ⁴ http://www.architecture2030.org/home.html ⁵ http://www.nahbrc.org/greenguidelines/ ⁶ Built Green is a Washington-based program that includes green building guidelines and certification. Built Green works closely with the National Association of Home Builders on the latter's programs. See, for example, http://www.builtgreen.net/checklists.html. ⁷ http://www.greenglobes.com/fitup/Non-Flash/index.htm - Develop programs for and provide education and training to consumers and in schools, as well as targeted professional training, to support the elements of this option. Professional training could include certification of building professionals as "green building certified". - Develop and continue to refine tools and standards to measure the GHG implications of different building approaches. - Use a variety of policy and administrative levers to promote and provide incentives for community planning (including planning in both new and existing communities) that incorporates GHG emissions considerations, and to discourage the construction of communities that do not. Identify and modify existing laws and regulations that are obstacles to planning and developing low-emissions buildings and communities, including obstacles to making existing communities more efficient. Provide local governments with analytical and policy tools to promote low-GHG-emissions community development, and encourage cooperation between jurisdictions to provide a consistent and strong approach to achieving community planning goals. #### Goals: - A target percentage of GHG emissions reductions from the buildings sector should be set so as to be consistent with the Governor's goals. - Expand the use of climate-friendly products in building materials. - Consider going beyond existing certification programs to Architecture 2030-level goals for new buildings, providing energy consumption performance (energy intensity) that is 50% of the regional average for each building type, or define goals as the higher levels of LEED (Gold/Platinum), higher levels of Built Green (4-Star, 5-Star), or similarly-stringent certifications in other systems of standards. - Explicitly identify the link between GHG reductions and land use planning decisions, as well as the reduction potential and target(s) for Washington state⁹ - **Timing:** As stated above, the timing of the goals should track the goals set by the Governor's Executive Order. - Coverage of parties: All builders, building material suppliers, recycled building material sellers, and home improvement stores. The aforementioned should be considered for both private and pubic construction projects. - Other: ## **Implementation Mechanisms** A number of potential implementation elements of this option are offered below and are grouped into several general categories: For example, by allowing/encouraging greater density of energy-efficient housing in existing neighborhoods that have nearby services accessible by foot, bicycle, or mass transit. Note that this is a category more easily measured on a regional or statewide basis than at the local government level because it includes things like "avoided sprawl" which has statewide reduction impact but may result in increased density (and emissions) locally. ## Improved Design and Construction #### General incentives and promotion: - Create a tax incentive for new energy-efficient commercial and residential buildings, as well as new master-planned communities, using the Oregon incentives as a model. To maximize effectiveness, tax incentives should target cutting-edge, very high-efficiency technologies or practices that customers might not find otherwise. The incentives should be large enough to affect decision-making, while reporting requirements should be just stringent enough to make fraud insignificant. - Support and provide incentives for programs that recognize embodied energy and operational energy in the building process. - Encourage state agencies to utilize the LEED rating system or the Green Globe rating system to promote the construction and design of energy-efficient buildings. - Provide tax credits for construction of a green building or rehabilitation of an existing structure to green building standards. - The state could provide incentives that encourage and promote the use of climate friendly products in both commercial and residential buildings and building materials. - Implement policies that encourage utilities to make renewable energy more widely available (note that this implementation measures likely will overlap with those of other RCI and ES options). - Increase and extend the tax credit for PV, biomass and wind that are mandated in SR 5101 to meet the standards of other states. ## **Consideration of life-cycle emissions:** - Consideration of concepts of embodied energy in and "renewability" of building materials 10 - Include embodied energy/carbon footprint/life cycle assessment information for building materials in green building standards such as LEED, Built Green, NAHB, Energy Star Homes Northwest, or Green Globes. - Targeting reduction of emissions from diesel engines used in new construction developments. - Develop and support a business assistance program to help identify and achieve GHG goals and life-cycle cost analysis of buildings and building components. - Promote measures to reduce urban "heat island" effects through integrated strategies, including green roofs, white roofs, plantings. - Include carbon footprint information/literature on materials in building supply and home improvement stores. ¹⁰ See, for example, CORRIM (Consortium for Research on Renewable Industrial Materials), <u>Life Cycle Environmental Performance of Renewable Building Materials in the Context of Residential Construction</u>, available from http://www.corrim.org/reports/2005/final report/index.htm. ## **Education and training:** - Provide training and certification of building professionals in green building-related specialties. Provide suitably trained building professionals with "green building" certification so that potential purchasers and developers of green buildings can be assured that builders and designers so designated are equipped to produce green buildings. A preliminary step here would be to adapt, adopt, and/or develop a suitable set of qualifications that building professionals must meet to receive a green building certification. - Provide consumer and primary/secondary education related to green building and green communities. - Increase private sector education to promote high performance green buildings. - Provide incentives for building operator certification. #### For tools and standards: - Set up a clearinghouse for information on and access to software tools to calculate the impacts of energy efficiency and solar technologies for buildings, including tools for use by local governments in evaluating community design options. Encourage cooperation between local governments on community planning issues, with the ultimate goal of promoting high participation by governments across the region. - Encourage, through promotions and incentives, private standards for green building and sustainable forest management (such as SFI, CSA, PEFC, FSC), as well as green building product certification for other building materials, such as Greenseal. - Set a cap on consumption of energy per unit area of floor space for new buildings. [CAT comment: It is suggested that the TWG reconsider also setting energy-efficiency targets in such a way as to provide a disincentive for construction of buildings that are larger than needed; efficiency standards for residential dwellings that are keyed to the average number of residents, rather than the floorspace of the building, might be an example. The use of "floor area ratios" as a criterion was suggested.] ## **Improved Community Planning** - Create incentives to encourage smart growth and support the GMA (Growth Management Act) by meeting Built Green Community certification, or LEED-ND gold level, with minimum energy and location criteria. - Improve planning to reduce sprawl modeled after efforts by the Center for Clean Air Policy¹¹, the state of California, and the Institute for Local Government¹² including the "California Communities Climate Action Plan" and the "California Green Community" rating tool. - Condition approval of hook-ups to city, county and utility services upon GHG emissions reduction plans. ¹¹ http://www.ccap.org/ http://www.cacities.org/index.jsp?zone=ilsg - Implement administrative changes to enhance integrated design of communities and transport systems. - Promote consideration of location as part of a building's GHG "footprint". - Reinforce the importance of Growth Management and conservation easements linked to Transfer of Development Rights. - Implement or adjust hookup fees for new developments to provide incentives for smart growth. - Move from a State Dept. of Transportation to a State Department of Urban, Rural, and Regional Mobility. - Establish a State Department of Urban Design. - Tie disbursement of transportation funds to collaborative planning at a regional level. - Review existing land use, building codes, and related laws and regulations, and consider modifications to laws and regulations as necessary, to assure that existing
regulations and laws do not pose barriers to improved building performance and/or community planning. - Utilize key State government leverage points to push smart land use planning approaches: including SEPA, housing elements, and others. - Require that all projects requiring government review identify GHG emission impacts and reduction options: Require that SEPA reviews quantify GHG emissions and identify measures to avoid, minimize or mitigate emissions for projects requiring government review. - Add climate protection as a required element of local planning under the state Growth Management Act. - Facilitate a coordinated long-range local government planning process to better coordinate land use, transportation and economic development. - Consider restricting financial and technical assistance to priority growth areas (as in Maryland). - Participate in multi-state efforts to qualify and quantify the impacts of land use on energy and environmental systems. - Support growth of localized agricultural food production and community-supported agriculture programs. #### Related Policies/Programs in Place #### LEED Executive Order 05-01, directs the adoption of green building practices in the construction of new or renovated existing state buildings (>25,000 ft²), as well as mandates a 10% reduction in State Agency energy purchases from 2003 levels by September 1, 2009 and LEED silver standards for WA public buildings. High-Performance Public Buildings bill (Chapter 39.35D RCW), requires all new state-funded facilities over 5,000 sq. ft. to meet green building standards. Major office and higher education facility projects will be required to achieve the US Green Building Council Leadership in Energy and Environmental Design rating standards (referred to as LEED™ Silver certification). New K-12 schools will be required to meet the Washington Sustainable Schools Protocol (WSSP) or LEED certification. The Department of General Administration's Sustainable Design and Construction program oversees the construction or reconstruction of state and state funded facilities built to LEED standards. The Department of Community, Trade, and Economic Development is required to adopt sustainable building standards by July 1, 2008. The legislature prioritized the use of locally extracted and manufactured products in all state building projects. LEED requirements do not apply to affordable housing projects that receive state funding, Several local governments offer <u>LEED Incentive Programs</u>. The City of Seattle's LEED Incentive program offers incentives to commercial projects based on LEED certification level achieved. Seattle's Built Green Incentive program assists with green residential single and multifamily projects. There are several tax incentives available in Washington State for solar and renewable energy products, which can be incorporated into green buildings. Ecology's Solid Waste and Financial Assistance Program is actively involved in promoting Green Building (GB) by training architects, builders, and lenders on Green Building and working with governments, communities, schools, commercial and residential sectors on GB initiatives. Some of the activities include: - Working with some counties to adopt GB in Solid Waste Plans. - Maintaining the Website developed at Ecology. Smart Growth Strategy for the 21st Century (http://smartgrowth.wa.gov CTED) [At the CAT meeting on 8/7/07, it was noted that Snohomish County is assessing its GHG footprint. Should this program be described here?] [A CAT member suggested including discussion of model policies and programs implemented in other states and countries, noting key benefits, costs, and other impacts experienced in those efforts.] #### Type(s) of GHG Reductions - Significant reductions could be achieved by substituting more energy intensive building materials with building materials that rely on less energy and therefore, produce far fewer GHG emissions. Recommendations in this area should consider full life cycle impact, including energy required to condition/operate space following occupancy (e.g. buildings constructed of low intensity building materials may require more energy to condition based on thermal massing potential, etc.). - Reduction of GHG emissions from avoided electricity production and avoided on-site fuel combustion. (language from New Mexico state process) - "Avoided Sprawl" has significant regional reduction potential. ## Estimated GHG Savings (in 2020) and Costs per MtCO2e #### • Data Sources: ## Improved Design & Construction: - Buchanan, A.H. and S.B. Levine. 1999. Wood-based building materials and atmospheric carbon emissions. *Environmental Science and Policy*. 2: 427-437. - Eriksson, P.E. 2003. Comparative LCA:s for wood construction and other construction methods- Energy use and GHG emissions. A study compile on behalf of the Swedish Wood Association, now part of Swedish Forest Industries Federation, Stockholm. http://www.Svenskttra.org/pub/lca.pdf (accessed Feb 28, 2007). - Miner, R. 2006. The 100-year method for forecasting carbon sequestration in forest products in use. *Mitigation and Adaptation Strategies for Global Change*. Published online 20 May 2006. Springerlink. - Perez-Garcia, J., B. Lippke, D. Briggs, J. Wilson, J. Bowyer, and J. Meil. 2005. The environmental performance of renewable building materials in the context of residential construction. *Wood and Fiber Science* 37 CORRIM Special Issue: 3-17. - Thormark, C. 2006. The effect of material choice on the total energy need and recycling potential of a building. *Building and Environment* 41:1019-1026. - U.S. Department of Energy. 2006. Forestry Appendix to Final Technical Guidelines for Voluntary Reporting of Greenhouse Gas Program, 1605(b). #### **Improved Community Planning:** - "The Role of Land Use in Meeting California's Energy and Climate Change Goals." - Smart Growth Strategy for the 21st Century (htpp://smartgrowth.wa.gov CTED) - Quantification Methods: Methods and protocols for measuring and reporting emissions and sequestration are adopted that are in harmony with nationally and/or internationally developed methods and protocols (such as the WRI/WBCSD *Greenhouse Gas Protocol*), which promote accuracy, transparency, and are cost-effective. #### • Kev Assumptions: - Public and Private building is factored into the GHG reduction goals that are being proposed. - Commercial Green building is defined as one that meets LEED silver standard or at least a Two Globe rating according to the Green Building Initiative's Green Globes rating system. [Volunteer Comment: This is a broad assumption without clear climate implications e.g. under current rating systems, a LEED silver building is not necessarily a climate friendly building. Same could be said for Green Globes.] - The prevailing standard for residential construction is the NAHB Green Home Building Guidelines [Volunteer Comment: If we are going to make assumptions about rating systems, we should be careful to highlight those credits within systems with the most direct climate impact. It's not just about using a rating system, it's actually about GHG reduction if we're to claim green building as a true climate mitigation strategy.] #### **Contribution to Other Goals** - Contribution to Long-term GHG Emission Goals (2035/2050): - o Would have a significant impact on GHG emissions reduction over the long term - Job Creation: - Reduced Fuel Import Expenditures: #### **Key Uncertainties** [Insert text here] ## **Additional Benefits and Costs** Improvements in building energy efficiency and community design, including the reduction of transport energy use provided by improved community design, can be expected to have positive impacts on air quality by reducing emissions of local pollutants. These in turn may have significant positive impacts on human health. Improvements in community design that encourage pedestrian and bicycle transit can provide the added benefit of increasing the physical activity of and interaction among members of the community. Improvements in community design may contribute significantly to the preservation of forest lands, with possible impacts on reducing loss of carbon from forest biomass stocks that might otherwise have been removed. ## **Feasibility Issues** [Insert text here] #### **Status of Group Approval** **TBD** #### **Level of Group Support** **TBD** #### **Barriers to Consensus** **TBD** # RCI-4. Energy Efficiency Improvement in Existing Buildings, with Emphasis on Building Operations **Straw Proposal Development Status:** Developed by TWG; Reviewed, Direction Affirmed by CAT on 8/7/2007 Based on RCI Catalog Option 2.6 ## **Mitigation Option Description** Existing buildings will continue to consume the bulk of the energy used in the residential and commercial sectors in Washington for many years. This option would promote and provide incentives for the improvement of the energy efficiency of the existing building stock. Key to reducing energy use and GHG emissions in existing buildings are building operations, maintenance, and occupant behavior (for example, via total resource management systems). ## **Mitigation Option Design** This option is designed to facilitate substantial improvements in the efficiency of existing buildings in Washington through a combination of measures related to building design, code enforcement, energy performance review, and improvements in building operations. Elements of this option are expected to work in concert with lending/financing elements of RCI-2, and with energy efficiency incentive and building/community design elements of RCI-1 and RCI-3. Potential elements of this option could include: - Promoting retro-commissioning and Building Operator Certification (BOC) in all facilities of large-portfolio organizations. - Supporting code enforcement, retro-commissioning, and building operator certification, as
applicable, when buildings are sold. - Support for energy efficiency lending. - Encouraging free market economy functions that achieve performance standards rather than imposing specific types of costs. - Commercial benchmarking and retro-commissioning consistent with 2030 Challenge baseline work (and/or with other green building certification systems). - Focusing on building operations, maintenance, and occupant behavior. - Encourage the retrofitting of existing buildings to significantly improve the energy efficiency of the existing residential, commercial, and industrial building stocks (see goals below). - Requirements for upgrading the energy efficiency of buildings at the time of resale, and/or evaluation (as needed) and labeling of building energy efficiency when buildings are purchased or leased so that the financial impacts on new owner/renter related to energy consumption can be clearly recognized. • A requirement that a full time resource conservation manager be located on the premises of all medium to large business or agency. Note that some of these elements will be more applicable to commercial and industrial buildings than to residential buildings, and vice versa, and in many cases flexible application of requirements and incentives will be needed in projects, such as mixed-use residential and commercial projects, that do not fall readily into specific consumer categories. #### Goals: - Propose energy performance metrics that help define and communicate energy use and environmental impact - o Identify systems that can accelerate savings and lower cost of implementation - Reduce energy use in the existing residential, commercial and industrial building stock by an average of 50% in the near term, with long term target of carbon neutrality. - Timing: - Coverage of parties: - Other: ## **Implementation Mechanisms** More specific possible implementation mechanisms for some of the elements of this option include: #### Promote retro-commissioning and BOC in all facilities of large portfolio organizations: - Require benchmarking and commissioning whenever buildings are financed or refinanced. - Require utilities to establish comprehensive program to promote and facilitate retrocommissioning of existing buildings, in particular regular inspections of boilers and air conditioning systems - Voluntary lighting upgrades supported by state technical assistance (see #### Focus on building operations, maintenance, and occupant behavior: - Provide consumers with real-time information on their energy consumption: provide incentives for in-home displays (concept of an energy "dashboard" or "speedometer") of energy use, energy costs, carbon consumption, water use, etc., and include context, e.g., how are you doing compared to your neighbors. Couple with information on products/services available for investment - Job development and career training: one constraint to deep energy savings is the lack of trained professionals and trades people that can provide solutions and implement strategies. There is a need for additional educational and training opportunities aimed at the construction industry. Certification of building professional in "green building", as noted in RCI-3 and RCI-8, is also desirable. - Consider a ban or requirement to eliminate inefficient lighting fixtures (San Francisco is considering an ordinance to eliminate all existing T-12 lighting within City limits; California is considering a ban on sale of incandescent light bulbs) - Conduct a state-wide campaign aimed at encouraging behavioral changes. Models in California (e.g. Flex Your Power) have had significant success at reducing statewide residential energy demand. ## Requirements for upgrading the energy efficiency of buildings at the time of resale - Establish minimum energy performance standards and/or cap energy budgets at the time of sale. - Establish (or facilitate by opening up legal pathway) point of sale and point of rental requirements for energy efficiency audits and upgrades, including labeling of the energy efficiency of buildings being rented or sold. Models for this type of program have been developed by Berkeley, San Francisco, Oakland, and by Austin (TX) could be applicable. - Provide assistance to affordable housing to allow those properties to meet the same energy performance standards. - Secure commitment of state and local government entities to undertake energy efficiency upgrades and operational changes in government owned and operated facilities as a first step in moving the market. ## Related Policies/Programs in Place LEED requirements apply to some remodeled building, see RCI-3. LEED-EB is applicable to the existing commercial building stock and provides a good guideline for achieving operational savings. The Built Green program and others certification standards may also be applicable to energy efficiency upgrades of existing buildings as supported by this option. [Note: A CAT member has provided materials related to "minimum energy efficiency Time-of-Sale Ordinances" from several US and overseas jurisdictions that could be summarized here] #### Type(s) of GHG Reductions [Insert text here] #### Estimated GHG Savings (in 2020) and Costs per MtCO₂e - Data Sources: - o ACI Summit: Moving Existing Homes Toward Carbon Neutrality: - Industry Stakeholder Recommendations for DOE's RD&D for Increasing Energy Efficiency in Existing Homes (http://www.affordablecomfort.org/images/Uploads/f_ind_stake_recommendations.pdf) - Whole-House Energy Analysis Procedures for Existing Homes (http://www.affordablecomfort.org/images/Events/30/E WholeHouse EnergyAnalysis.pdf) - Existing Homes Target Market Assessment (http://www.affordablecomfort.org/images/Events/30/B marketreport doemod.pdf) - US Residential energy expenditure (http://www.affordablecomfort.org/images/Events/30/C_US_Residential_energy_expenditure.pdf) - UNEP, "Buildings and Climate Change: Status, Challenges and Opportunities." (http://www.uneptie.org/pc/sbc/documents/Buildings and climate change.p df) - Summary and Recommendations of the Getting to Fifty Summit (http://www.newbuildings.org/gtf/documents/GT50 Summit Final Report.p df) - Options for Energy Efficiency in Existing Buildings (http://www.energy.ca.gov/2005publications/CEC-400-2005-039/CEC-400-2005-039-CMF.PDF) 27 - Quantification Methods: - Key Assumptions: #### **Contribution to Other Goals** - Contribution to Long-term GHG Emission Goals (2035/2050): - Job Creation: - Reduced Fuel Import Expenditures: #### **Key Uncertainties** [Insert text here] #### **Additional Benefits and Costs** [Insert text here] #### **Feasibility Issues** [Insert text here] ### **Status of Group Approval** **TBD** ## **Level of Group Support** **TBD** ## **Barriers to Consensus** **TBD** ## RCI-5. Rate structures and Technologies to Promote Reduced GHG Emissions (including Decoupling of Utility Sales and Revenues) **Straw Proposal Development Status:** Input Provided by Volunteer Group for TWG Review *Based on RCI Catalog Option 5.3* ## **Mitigation Option Description** Traditional regulatory frameworks tie a utility's recovery of fixed costs of providing service (e.g infrastructure costs) to quantity of energy sold. There is thus a perverse incentive for utilities to increase sales in order to increase revenues and minimize investments in energy efficiency (which will simply lead to lower than anticipated sales). [This option could include various elements of utility rate design that are geared toward reducing greenhouse gas emissions, often with other benefits as well, such as reducing peak power demand. The overall goal is to revise rate structures so as to better reflect the actual economic and environmental costs of producing and delivering electricity as those costs vary by time of day, day of the week, season, or from year to year. In this way, rates provide consumers with information reflecting the impacts of their consumption choices.] ## **Mitigation Option Design** Potential elements of this option could include: - Modifying policies to align utility incentives with the delivery of cost-effective energy efficiency and modify ratemaking practices to promote energy efficiency investments. Programs could be based on efforts in this are through the National Action Plan for Energy Efficiency¹³, the ACEEE Report: Aligning Utility Interests with Energy Efficiency Objectives¹⁴, and related program models in California and Oregon. - Different types of rate structures and bases for rate structures, including rates based on the number of occupants of a home rather than its size. (Note: We should avoid language like this where the unintended consequence would be punitive on low income people.) - Programs that consider the interaction of green building programs and rate structures. [THIS BULLET INCLUDED IN CATALOG, BUT DELETING IT HAS BEEN SUGGESTED BY VOLUNTEER] - Provide programs that provide incentives for consumer behavior that is more energy efficient (for example, energy efficient customer rebate programs). The benefits of these programs are that they educate consumers on energy use and motivate them to conserve energy. ¹³ http://www.epa.gov/cleanrgy/actionplan/eeactionplan.htm ¹⁴ http://www.aceee.org/pubs/u061.htm - Education programs should be deployed that educate consumers by demonstrating the nexus between consumers' behavior and the impact on energy use and consequently, increases in GHG emissions. - Encourage demand response programs that provide incentives to customers to voluntarily reduce their load at times of system peaks. - [Rate structures and utility cost recovery rules that "decouple" the level of utility sales from the net revenues earned by utilities. Decoupling
mechanisms have been implemented or are under consideration in a number of western states. (Note: PSE is not pursuing decoupling at this time.) Decoupling, if introduced, should be tightly controlled and limited to energy efficiency funded by the utilities. - Time-of-use (TOU) rates provide an incentive for customers to shift their usage from peak to non-peak periods and thereby, reducing the need for utilities to have to utilize their least efficient, least environmental-friendly generation resources. - Tiered (increasing block) rates for electricity and natural gas use, which provide affordable base usage rates for residential consumers, but which increase with increasing consumption. - "Smart metering"—implementation of consumer meters showing real-time pricing, and the level of GHG emissions related to consumption at any given time. Smart meters are described as providing consumers with the information needed to make consumption choices, and can include the capability for consumers to adjust the type of power (for example, "green" versus conventional power) "on the fly".] ### • Goals: - Develop and implement a pilot program of installation of smart meters at residential customers' sites starting in 2010. The pilot program could target installation of smart meters in roughly one (1) percent of homes in Washington. - Implement a customer rebate program that gives customers a percentage rebate on bills if they are able to reduce their consumption by a certain percentage during certain periods of the year. (ie: use of natural gas in the winter to heat the home) - Remove regulatory and financial barriers to natural gas utility investments in costeffective conservation. - Better align the interests of utilities and customers. - Timing: Should be implemented in a timely fashion enabling the goals to run concurrent with the goals set out in the Governor's Executive Order. - Coverage of parties: Washington Utilities and Transportation Commission, electric utilities, and the residential sector. - Other: #### **Implementation Mechanisms** • If the pilot program is successful, consider implementing statewide. - Recommend the legislature propose a customer rebate program in future legislation. - Continue to improve on existing energy efficient programs already implemented by the state. ## Related Policies/Programs in Place In 2006, the Legislature passed the net metering law (HB 2352 - amending Chapter 80.60 RCW). The law directs large electric utilities to: "... offer to make net metering available to eligible customers-generators on a first-come, first-served basis until the cumulative generating capacity of net metering systems equals 0.25 percent of the utility's peak demand during 1996. On January 1, 2014, the cumulative generating capacity available to net metering systems will equal 0.5 percent of the utility's peak demand during 1996. Not less than one-half of the utility's 1996 peak demand available for net metering systems shall be reserved for the cumulative generating capacity attributable to net metering systems that generate renewable energy." American Gas Association's April 2007 "Rate Round Up" includes a summary of "innovative" rate programs across the country. Two natural gas utilities in Washington state are currently implementing [pilot] decoupling programs: Avista and Cascade Natural Gas: ## Washington - Avista On February 1, 2007, Avista received approval from the Washington Utilities and Transportation Commission to implement a partial decoupling mechanism on a three-year pilot basis. The program, which does not include losses related to weather, will apply to residential and small commercial customers, and rate increases from the program will be capped at 2 percent per year. The company had recently completed a rate case when it filed its petition. Avista is to defer 90 percent of the non-weather-related margin difference (positive or negative), which is to be recovered from or returned to customers. The recovery of any deferred costs is subject to both an earnings test that would prohibit collection if Avista is earning above its authorized 9.11 percent rate of return, and a demand-side management (DSM) test that would prohibit collection if specific conservation targets are not achieved. Funds not recovered due to the earnings and/or DSM tests may not to be carried over to the next period. Also, the commission prohibits Avista from earning interest on deferrals until the deferrals are approved for recovery. Avista must submit an evaluation of the mechanism and any proposed modifications if it wishes to continue the program after three years. The commission stated that the mechanism will be evaluated, and extension granted, only if there is a demonstration that the mechanism led to cost-effective enhanced conservation. 9 Copyright © 2007 American Gas Association. All rights reserved. #### Washington - Cascade Natural Gas On January 12, 2007, the Washington Utilities and Transportation Commission authorized Cascade Natural Gas to implement a partial decoupling mechanism on a pilot basis for a three- year period. The mechanism, which will apply to residential and general service commercial customers, would defer non-weather-related margin variances (e.g., changes in usage related to conservation and energy efficiency improvements). In connection with the decoupling mechanism, the settlement called for Cascade to submit a conservation plan, which would be filed after the settlement was approved and an advisory group was convened to review an outside consultant's assessment of the energy efficiency potential in the company's service territory. The settlement specified that the plan would contain targets and benchmarks based on recommendations from the advisory group, and opportunities for penalties and/or incentives. Cascade's program includes paying for customer incentives on rebates for cost-effective demand side management programs, such as high efficiency appliances, insulation and consumer education programs. The decoupling program will be subject to commission approval of a conservation plan, with earnings capped at the authorized 8.85 percent overall rate of return, and will include penalties for failure to meet conservation targets and benchmarks. The pilot program will be evaluated regardless of whether the company seeks to continue the program after the three-year period expires. This case was a follow up to the company's previous proposal before the Washington commission. In May 2005, the commission issued a proposal to decouple utilities' gas volume sales from their recovery of fixed costs. As part of the proceeding, the commission considered a decoupling petition by Cascade Natural Gas that was outside of a rate case. The commission ultimately denied the petition and said that the issues were better considered within a rate case. http://www.epa.state.il.us/air/climatechange/documents/subgroups/power-energy/aga-update-on-revenue-decoupling-mechanisms.pdf State EE/RE Technical Forum: Decoupling and Other Mechanisms to Address Utility Disincentives for Implementing Energy Efficiency, http://www.epa.gov/cleanenergy/pdf/keystone/Background Decoupling 5-19-05 PQA final.pdf The establishment of a policy to remove the disincentive for utility investments in energy efficiency was a key element of California's energy efficiency success. 15 ## **Type(s) of GHG Reductions** [Insert text here] #### Estimated GHG Savings (in 2020) and Costs per MtCO₂e • Data Sources: US EPA. Business Case for Energy Efficiency: http://www.epa.gov/cleanenergy/pdf/napee/napee_chap4.pdf Energy Efficiency in California and the United States. White Paper. Audrey B. Chang, Arthur H. Rosenfeld, and Patrick K. McAuliffe. 2007. Related presentations available at: http://www.energy.ca.gov/commission/commissioners/rosenfeld docs/index.html #### US EPA. Business Case Details: #### http://www.epa.gov/cleanenergy/pdf/napee/napee appb.pdf National Association of Regulatory Utility Commissioners (NARUC): In 2006 and prior years, NARUC adopted several resolutions encouraging state and federal regulatory commissions to implement innovative rate designs, including energy-efficiency tariffs and decoupling tariffs, to promote energy efficiency and conservation. - Quantification Methods: - Key Assumptions: - o This policy should be primarily directed at the Residential Sector. - Assume some of the savings associated with RCI-1 may be contingent upon the potential of cost recovery by natural gas utilities. #### **Contribution to Other Goals** - Contribution to Long-term GHG Emission Goals (2035/2050): - Job Creation: - Reduced Fuel Import Expenditures: #### **Key Uncertainties** - Impact on low income people: Whatever policy options that are implemented need to be mindful of the impact on low income individuals. A raise in utility costs could be extremely disproportionate to this class of people. Moreover, low income families tend to use the most inefficient heating and cooling systems. - Increasing Tier Block (Inverted block): could result in large bill increases for users that cannot change their usage level and could encourage more use by the smaller users. Additionally, commercial & residential facilities are not homogeneous and therefore, this rational does not work for commercial and industrial. - Smart Metering: recommend a study of this rate design option to ensure that the benefits justify the cost. For example, could monitor or study the program being considered by the Energy Trust of Oregon. #### **Additional Benefits and Costs** - Reducing dependence on imported fuel sources; - Reducing vulnerability to energy price spikes; - Reducing peak demand and improving the utilization of the electricity system; - Reducing the risk of power shortages; - Supporting local businesses and
stimulating economic development; - Enabling avoidance of the most controversial energy supply projects; - Reducing water consumption by power plants; and - Reducing pollutant emissions by power plants and improving public health. ## **Feasibility Issues** [Insert text here] ## **Status of Group Approval** **TBD** ## **Level of Group Support** **TBD** ## **Barriers to Consensus** **TBD** # RCI-6. Provide Incentives to Promote and Reduction of Barriers to Implementation of Renewable Energy Systems **Straw Proposal Development Status:** Joint consideration with ES TWG in progress (See option ES-2) (Shaded text below from current ES-2 description) Based on RCI Catalog Option 6.1 This option will be pursued jointly with the ES TWG ## **Mitigation Option Description** Distributed electricity generation sited at residences and commercial and industrial facilities, and powered by renewable energy sources (typically solar, but also wind, small hydroelectric power sources, or biomass or biomass-derived fuels), displaces fossil-fueled generation and avoids electricity transmission and distribution losses, thus reducing greenhouse gas emissions. This policy can also encourage consumers to switch from using fossil fuels to using renewable fuels in applications such as water, process, and space heating. Increasing the use of renewable energy applications in homes, businesses, and institutions in Washington can be achieved through a combination of regulatory changes and financial incentives. The TWG has not yet agreed on the definition of Distributed Generation. Some TWG members suggested that this option should consider defining distributed generation according to RCW 19.285.030(9), i.e., an eligible renewable resource where the generation facility or any integrated cluster of such facilities has a generating capacity of not more than five megawatts. Other members suggest that larger units should also be included (up to 100 MW). Potential technologies include: solar photovoltaic systems, solar water heating/space heating systems, wind power systems, particularly for rural areas, biomass-fired generation, space, or water heating systems. There are numerous barriers to distributed renewable energy, including inadequate information, institutional barriers, community barriers, limited number of qualified contractors, high technology costs high transaction costs because of small projects, high financing costs because of lender unfamiliarity and perceived risk, "split incentives" between building owners and tenants, and utility-related policies like interconnection requirement, high standby rates, exit fees, etc. The lack of recognition for emissions reduction value provided also creates obstacles. Policies to remove these barriers could include: improved interconnection policies, improved rates and fees policies, streamlined permitting, recognition of the emission reduction value, financing packages and bonding programs, power procurement policies, education and outreach, etc. [Distributed electricity generation sited at residences and commercial and industrial facilities, and powered by renewable energy sources (typically solar, but also wind, small hydroelectric power sources, or biomass or biomass-derived fuels), displaces fossil-fueled generation and avoids electricity transmission and distribution losses, thus reducing greenhouse gas emissions. This policy can also encourage consumers to switch from using fossil fuels to using renewable fuels in applications such as water, process, and space heating, as well as to supply new energy services using fuels that produce low or no GHG emissions. Increasing the use of renewable energy applications in homes, businesses, and institutions in Washington can be achieved through a combination of regulatory changes and financial incentives. ## **Mitigation Option Design** Potential elements of this option could include: Potential elements of this option could include [these suggestions have not been fully discussed by the TWG and are subject to revision]: - The primary barrier to new small DG is the high initial cost which must be borne by the customer-generator. Mitigation could include: WA tax credits for commercial operations; WA-supported no-interest loans to residential customers; and WA state rebates for the purchase of specified technologies. Tax credits and other mechanisms to make distributed renewable resources more economically viable are important to develop non-traditional resource alternatives. - Washington already has uniform interconnection standards for small DG resources and net-metering laws. The existing regulatory construct can discourage direct utility capital investment in DG; those barriers should be examined, at least. Other "incentives" aimed at increasing market penetration of DG and certain energy efficiency technologies would be more effectively targeted at utilities, rather than individual consumers; utilities could be encouraged to create the market if they (IOUs) have the proper incentives to do so. - Incentives should be utilized where appropriate (for example, to encourage renewable generation in excess of I-937 requirements). Utility rates of return should be increased for these investments. - Conduct analysis to determine availability of DG supply. If it is determined that there are significant opportunities for DG, expand incentives and remove barriers to encourage deployment of these technologies. - There is support among some members of the Energy Supply TWG to amend I-937 to include a broader variety of resources and waste-to-energy (WTE) as renewable fuels. I-937 proponents have concerns about opening up the initiative, in part because of the potential to undermine the original intent that now serves as a fundamental basis of GHG emission reductions in the energy supply sector. I-937 proponents also have concerns about air quality impacts of traditional methods of burning pulping liquors and even more so with WTE. - Interconnection standards are based on federal, state and industry safety requirements. High interconnection costs and regulatory access barriers can be shifted from the customer-generator to the general population with appropriate legislation. - Consider amending the net metering statute (RCW 80.60) to: (1) increase the size of qualifying [agricultural] systems from 100 kW to 200 kW (currently net metering is available generally up to 100 kW); (2) accelerate the timeline for increasing the cumulative generating capacity available to renewable net metered systems¹⁶; and (3) ensure a simplified process for customer-generators to utilize net metering. [Note, as mentioned above, that the TWG has not yet agreed on appropriate size (kW) for this recommendation] - Consider requiring new connections representing a load greater than a certain threshold (x kW) to evaluate distributed generation options - Simplify process for customer generators to utilize net metering - Training/certification programs for installers/contractors - Net metering and other pricing arrangement programs - Improving interconnection standards and reducing costs - Encouraging the creation of and support for biomass fuels markets. - Encouraging small scale renewable systems including biomass boilers, small scale wind, and geo-thermal. - Amending I-937 to include organic pulping byproducts as renewable fuels. - Incentives and barrier elimination, including avoided cost barriers for CHP. - Tax credits, and/or utility or other incentives to lower the first cost of distributed energy systems to users. This could include expanding incentives offered under the existing law to residential consumers to include commercial systems, offering B&O tax credits for commercial- scale systems, and offering low- or no-interest loans for commercial and residential systems. - Efforts to simplify and standardize permitting for industrial and large commercial DG systems, as well as support for County and city land use prescreening efforts to facilitate siting. - [Solar roofs (roofing materials with built-in solar photovoltaic cells, or solar PV panels erected on roofs). - Solar water heating/space heating systems. For example, the EnergyStar bulk purchasing tool—developed by the U.S. Department of Energy, in collaboration with the Department of Housing and Urban Development and the U.S. Environmental Protection Agency—is designed to make it easy to comparison shop for energy-efficient products. The tool provides a simple way to obtain bids on EnergyStar-qualified products such as appliances, compact fluorescent light bulbs, and light fixtures. - Wind power systems, particularly for rural areas. - Biomass-fired generation, space, or water heating systems. ¹⁶ 80.60.020(1) says: "... On January 1, 2014, the cumulative generating capacity available to net metering systems will equal 0.5 percent of the utility's peak demand during 1996. Not less than one-half of the utility's 1996 peak demand available for net metering systems shall be reserved for the cumulative generating capacity attributable to net metering systems that generate renewable energy". - Programs targeted at specific customer sectors (residential, commercial, industrial), or specific markets within sectors. - Programs to increase funding opportunities for design of renewable energy systems associated with state facilities and university campuses.] - Goals: Overcome barriers posed by high up-front costs of distributed generation systems. Expand use of systems in Washington, and promote stronger market for Washington's solar energy industry. Achieve XX% of identified [cost-competitive] distributed generation potential in Washington by 2020 or achieve XX aMW/BTU of [specific resource]. - Timing: Many of the incentives, including loan subsidies, could be implemented in the 2009 legislative session, when the next biennial budget is drafted by the legislature. - Coverage of parties: - Other: #### **Implementation Mechanisms** - State
incentive funds and low or no interest loan programs subsidized by the state. - Expansion and/or extension of tax incentives provided under SB 5101 (2005). [The following are from RCI TWG comments and have not been fully discussed by the Energy Supply TWG] - Training/certification programs for installers/contractors - Net metering and other pricing arrangement programs - Improving interconnection standards and reducing costs - Encouraging the creation of and support for biomass fuels markets. - Encouraging small scale renewable systems including biomass boilers, small scale wind, and geo-thermal. - Incentives and barrier elimination, including avoided cost barriers for CHP. - Tax credits, and/or utility or other incentives to lower the first cost of distributed energy systems to users. This could include expanding incentives offered under the existing law to residential consumers to include commercial systems, offering B&O tax credits for commercial- scale systems, and offering low- or no-interest loans for commercial and residential systems. - Efforts to simplify and standardize permitting for industrial and large commercial DG systems, as well as support for County and city land use prescreening efforts to facilitate siting. - Possible amending of I-937, or other climate policies, to include a broader range of resources as renewable fuels. [Several TWG members have expressed concern about opening up I-937 in general and in particular with respect to pulping liquors and waste-to-energy]. • Consider legislation requiring utilities to adopt electric service connection standards that require customers who are adding new large loads (greater than X kW) to require those customers to mitigate that load with distributed generation (either on site or elsewhere.) #### Related Policies/Programs in Place In 2005, the Legislature enacted the Renewable Energy System Cost Recovery (RCW 82.16.110) and Tax on Manufacturers or Wholesalers of Solar Energy Systems (RCW 82.04.294). The legislation provides incentives for the purchase of locally-made renewable energy products and provides a preferential rate under the business and occupation tax. Furthermore, tax exemptions under RCW 82.08.02567 and RCW 82.12.02567 incent the purchase and use of machinery and equipment used directly to generate electricity using fuel cells, wind, sun, or landfill gas. Similarly, RCW 82.08.835 and RCW 82.12.835 incent the purchase and use of solar hot water systems. Incentive payments are provided by electric utilities to customers generating renewable energy (i.e., solar, wind) on their property. For example, the Chelan County PUD Sustainable Natural Alternative Power Producers Program encourages customers to install power generators such as solar panels and wind turbines and connect them to the PUD distribution system; Avista Utilities provides a production credit of 14 cents per kWh for one year; Bonneville Environmental Foundation Green buys "tags" for five cents per kWh for up to five years (see additional information at end of this document). The U.S. Energy Policy Act of 2005 provided several renewable energy incentives, some significant enough to spur the development of wind projects in many parts of the US, including WA State. Other renewable energy incentive programs include: the federal income tax credit of 30% for one year (max \$2,000); an Avista Utilities production credit of 14 cents per kWh for one year; Bonneville Environmental Foundation Green tags for five cents per kWh for up to five years; and PSE Green Power program. Producers of wind power are eligible for incentive payments up to 33 cents per kWh, if products are manufactured in WA; for out-of-state components payments are 12 cents per kWh. The Energy Facility Site Evaluation Council (EFSEC) is a one-stop process for siting, permitting and monitoring energy facilities such as wind, thermal, and IGCC (Integrated Gasification Combined Cycle) power plants¹⁷. A statewide biomass inventory and assessment was completed in 2005 by the U.S. Department of Energy (DOE) and Washington State University (WSU). The inventory identified nearly 17 million dry weight tons of annually renewable biomass resources across the state, with woody biomass as the dominant resource. Estimates indicate this organic resource is capable of supplying -- through combustion and anaerobic digestion -- about 50% of Washington annual 39 _ ¹⁷ See, for example, http://www.efsec.wa.gov/. residential electrical needs. In 2006, the Washington legislature authorized the "Waste to Fuels Technology" project, a partnership between the U.S. DOE and WSU, to evaluate the potential energy production from biomass feedstock, identify specific bio-fuels recovery technologies, and assess market development economics for organic resources. ## **Renewable Portfolio Standards** WA has significant solar, wind, wave, tidal and biomass resources. Shifting from fossil fuel-based energy to bio-energy and bio-products will reduce GHG emissions. The Energy Independence Act (Initiative 937) passed by the state's voters in 2006 established renewable portfolio standards. Large utilities (25,000 customer and over) are required to obtain 15% of their electricity from new renewable resources, such as solar and wind, by 2020 (3% in 2012, 9% in 2016 and 15% in 2020). Additionally, utilities must undertake cost-effective energy conservation. The RPS affects 95% of the electric generation in the state. Executive Order 05-01 mandates 10% reduction in State Agency energy purchases from 2003 levels by 9/1/2009, including through use of renewable energy ## **Type(s) of GHG Reductions** [Insert text here] #### Estimated GHG Savings (in 2020) and Costs per MtCO₂e - Data Sources: Western Governors Association's Clean and Diversified Energy Initiative; EIA Annual Energy Outlook 2007 assumptions; Energy Trust of Oregon A Comparative Analysis of Community Wind Power Development Options in Oregon. - Quantification Methods: - Key Assumptions: #### **Contribution to Other Goals** - Contribution to Long-term GHG Emission Goals (2035/2050): Likely dependent on how key uncertainties noted below are resolved over time. Level of contribution to long term goals dependent on how broadly DG technologies are utilized, which are in turn highly dependent on per kW cost of systems. - **Job Creation:** Washington is home to many companies, such as RES and Xantrex, that manufacture solar energy and other DG system components. Expansion of the market for DG systems should help grow this fledgling industry in Washington and create more jobs in places like Moses Lake, Arlington and Vancouver. - Reduced Fuel Import Expenditures: # **Key Uncertainties** Growth in utilization of DG technologies will depend, in part, on new technologies, increased manufacturing efficiencies with existing technologies and increase in markets to drive economies of scale that will reduce system costs ## **Additional Benefits and Costs** [Insert text here] ## **Feasibility Issues** High level of consensus on incentives. **Renewable Energy** -- tapping local renewable resources such as bio-energy. including abundant supplies in the NW and Canada. - Bio-energy includes a range of biomass feedstocks and technologies for conversion of these materials into useful energy. - "Biomass" is a general term for organic materials, and encompasses woody materials such forest wood wastes, wood chips, urban waste wood (tree trimmings), sawmill residue, crop residues, organic portions of municipal waste. Encourage development of cellulosic ethanol via pro-active policies and incentives. - Increasing interest in bio-energy is driven by advances in technology, environmental benefits, energy supply and price stability, and the potential for significant spin-off employment in fuel procurement and processing. - For some biomass materials, using the biomass for energy also can eliminate a waste disposal and landfill saturation problem. - Biomass can be used directly to produce thermal energy and/or electricity. Liquid or gaseous fuels can be produced from biomass for combustion in reciprocating engines or gas turbines. - Geothermal resources are found throughout most of the western continental U.S., Alaska, Hawaii, and, to a lesser degree, in areas of the south and east. - Power generation is only one aspect of geothermal resource development. Geothermal heating, especially when coupled with district energy systems, can contribute significantly to reduction in the use of conventional fuels. - There are 271 communities in 10 western states, including WA, with nearby geothermal resources that could provide a renewable source of heating. These cities represent a population of 7.4 million people. #### **Status of Group Approval** **TBD** # **Level of Group Support** **TBD** #### **Barriers to Consensus** RCI-7. Provide Incentives and Resources to Promote and Reduction of Barriers to Implementation of Combined Heat and Power (CHP, or "cogeneration") and Waste Heat Capture, Including Net-metering for Combined Heat and Power **Straw Proposal Development Status:** Joint consideration with ES TWG in progress (See option ES-7) Based on RCI Catalog Options 6.2 and 5.2 #### **Mitigation Option Description** [This policy option involves the consideration and adoption by state regulatory authorities of rate designs, coupled with the necessary metering technology, that promote reduction in GHG emissions by encouraging consumers to install distributed generation systems—especially those based on renewable fuels—and combined heat (and or cooling) and power systems that offer the opportunity to improve the overall efficiency of fuel use. Combined heat and power (CHP) systems reduce fossil fuel use and greenhouse gas emissions, both through the improved efficiency of the CHP systems, relative to separate heat and power technologies, and by avoiding transmission and distribution losses associated with moving power from central power
stations that are located far away from where the electricity is used.] Opportunities to recover ("recycle") thermal energy from local waste heat or renewable energy sources include recovery of waste heat from power generation (through combined heat and power or CHP), industrial processes, or municipal operations, and tapping local renewable resources such as bio-energy, geothermal and natural sources of air conditioning such as cold lake or ocean water. District energy systems provide the infrastructure for conveying this energy from the sources to energy consumers. [Implementation of CHP systems by residential, commercial, institutional, and industrial energy consumers could be encouraged through a combination of regulatory changes and incentive programs.] #### **Mitigation Option Design** Potential elements of this option could include: #### **General incentives and support:** - Increasing overall on-site energy efficiency through CHP and use of waste heat. - Eliminating or reducing financial, regulatory, and barriers to implementation of systems in the commercial, industrial, and, as suitable technologies are commercialized, in the residential sector. - A state policy that all new non-renewable (and/or fossil fuel) power plants in WA State must be CHP plants (and located within urban environments). - Amending I-937 to include organic pulping byproducts as renewable fuels. - Training/certification of installers/contractors - Creation/support of markets for biomass fuels - [Promotion of the use of gas-fired and/or biomass-fired CHP systems, (in eastern Washington and/or rural areas). - Creation/expansion of markets for, and incentives designed to promote implementation of, CHP units in capacities suitable for residential, commercial, and industrial users.] - Leveraging of attractive financing arrangements, tax benefits such as the existing sales and use tax incentive for machinery and equipment used for cogeneration facilities (RCW 82.08.02565¹⁸ and RCW 82.12.02565¹⁹) and other incentives to promote CHP technologies. ## Net-metering, rates, and interconnection issues: - Ensuring that utilities establish accurate avoided costs that reflect true higher incremental costs (e.g. new natural gas fired Combined Cycle Turbine generation). - Removing high interconnection cost and regulatory access barriers similar to OR Public Utility Commission ruling under UM 1129. - Increasing the current net-metering cap from 25 kW to 1 MW, and allow aggregation if appropriate in commercial and/or agricultural applications. - [Review of existing net-metering policies in Washington (Chapter 80.60 RCW), including policies that affect electricity consumers who install on-site combined heat and power or distributed generation fueled with renewable or fossil fuels. - Review and consideration of utility and other technical rules related to the interconnection of consumer-sited power sources to the electricity grid to assure that they offer equitable treatment of potential distributed generation hosts while providing adequate safeguards for the public and for power sector workers. - Consideration of the impact of NOx and power factor requirements on net-metering and availability of information for small customers] #### Permitting and siting - Simplifying and standardizing permitting of projects (for industrial and large commercial CHP systems). - Supporting county and city land use prescreening efforts to support siting. #### Government lead-by-example: • Addressing lack of funding for design of CHP and waste heat utilization systems associated with state facilities and university campuses. ## Waste heat capture/recycling: • Encouragement of capture of waste heat from power generation and industrial processes for use in homes and commercial buildings. ¹⁸ http://apps.leg.wa.gov/RCW/default.aspx?cite=82.08.02565 ¹⁹ http://apps.leg.wa.gov/RCW/default.aspx?Cite=82.12.820 - A Washington State inventory of waste heat resources, evaluating the full renewable thermal energy potential in the State - Incentives for new or existing waste heat generators to (re)locate adjacent or close by to heat users - Information/education/outreach programs to address barriers to district energy development, and financial incentives. - Goals: - Timing: - Coverage of parties: - Other: #### **Implementation Mechanisms** [Insert text here] #### Related Policies/Programs in Place [Insert text here] ## Type(s) of GHG Reductions [Insert text here] # Estimated GHG Savings (in 2020) and Costs per MtCO2e - Data Sources: - Quantification Methods: - Key Assumptions: #### **Contribution to Other Goals** • Contribution to Long-term GHG Emission Goals (2035/2050): 44 - Job Creation: - Reduced Fuel Import Expenditures: #### **Key Uncertainties** [Insert text here] #### **Additional Benefits and Costs** [Insert text here] ## **Feasibility Issues** [Insert text here] # **Status of Group Approval** # **Level of Group Support** **TBD** # **Barriers to Consensus** # RCI-8. Consumer Education Programs, Including Labeling of Embodied Life-cycle Energy and Carbon Content of Products and Buildings #### **Straw Proposal Development Status:** In progress Based on RCI Catalog Options 4.1 and 8.2 #### **Mitigation Option Description** [The ultimate effectiveness of emissions reduction activities in many cases depends on providing information and education to consumers regarding the energy and GHG emissions implications of consumer choices. Public education and outreach is vital to fostering a broad awareness of climate change issues and effects (including co-benefits, such as clean air and public health) among the state's citizens. Such awareness is necessary to engage citizens in actions to reduce GHG emissions in their personal and professional lives. Public education and outreach efforts should integrate with and build upon existing outreach efforts involving climate change and related issues in the state. Ultimately, public education and outreach will be the foundation for the long-term success of all of the mitigation actions proposed by the Washington CAT, as well as those that may evolve in the future.] This option would additionally include elements to estimate the embodied life cycle energy use and carbon emissions associated with products and buildings, to label products and buildings being sold so as to provide feedback to consumers on their "carbon footprint", and to encourage the use of lower-carbon products and building materials. #### **Mitigation Option Design** Potential elements of this option could include: - Linking consumer education programs with retail sales organizations. - Requirements for retail education (on packaging or on a handout provided at the time of purchase), that will inform consumers about the energy consumption of the products they buy and how to operate or use the products in the most energy efficient manner. - Engaging industrial firms to promote LEAN manufacturing techniques and other practices to reduce unnecessary energy and material consumption. - A consumer education requirement at the time of sale - Encouraging government to engage small businesses on GHG emissions reduction by using environmental impacts education materials. - Public school curricula at all levels to shape long-term behavior. - Labeling of building materials in reference to CORRIM study²⁰ and LCA²¹ work. ²⁰ http://www.corrim.org/reports/2006/fpj_oct_2006/FPJproductSubs.pdf ²¹ http://www.epa.gov/ORD/NRMRL/lcaccess/ - [Truth-in-advertising campaigns. - *In-home energy displays.* - Providing tools and information for residents, businesses and communities to perform GHG inventories, and to evaluate and act upon inventory results. - Engaging community leaders and community-based organizations (for example, institutions, municipalities, service clubs, businesses and business organizations, social and affinity groups, non-governmental organizations, and others) to recognize leadership opportunities, share success stories and identify role models.] - Work with community colleges, universities, labor organizations, governments, business organizations, and businesses to promote the development of programs for training of a much expanded "clean energy workforce" to work in fields like energy efficiency, distributed and renewable energy, and the "green building" (see below) trades. - As noted in RCI-3, there is a need to provide suitably trained building professionals with "green building" certification so that potential purchasers and developers of green buildings can be assured that builders and designers so designated are equipped to produce green buildings. A preliminary step here would be to adapt, adopt, and/or develop a suitable set of qualifications that building professionals must meet to receive a green building certification. - Expanding climate involvement and participation within communities. - Developing programs to have state agencies/local governments promote improvements within small business sectors and trade associations by using existing models for business education of environmental impacts. #### Carbon Labeling A labeling scheme would indicate to the consumer the total embodied carbon emitted during the life cycle of a particular product (including the product and the packaging). Life cycle analysis should consider the direct emissions including the phases of production: raw material, product manufacturing, distribution and retail, consumer use (is it refrigerated, etc), and recycling. The life cycle analysis would determine the total amount of carbon emitted during the creation and use of the product and that number would be put on the carbon label. This label would also indicate that the company has made a commitment to reducing the carbon footprint of the specific product over the course of two years. This type of labeling would inform consumers about the embodied carbon footprint of a particular project, giving them the opportunity to influence corporate
practices through their buying power. Companies participating in the program would also be able to show that they are committed to reducing their carbon footprint and to mitigating climate change. The UK is implementing a similar program through the UK Climate Trust. The methodology for determining the carbon footprint of each product can be found here: http://www.carbontrust.co.uk/NR/rdonlyres/6DEA1490-254B-434F-B2B2-21D93F0B0C98/0/Methodology_summary.pdf • Goals: Carbon labeling scheme would cover all products sold within Washington State. - **Timing:** For carbon labeling scheme, full implementation by 2020 with phased implementation starting with highest priority items identified by an advisory panel. - Coverage of parties: - Other: #### **Implementation Mechanisms** [Insert text here] #### Related Policies/Programs in Place [Insert text here] # Type(s) of GHG Reductions [Insert text here] #### Estimated GHG Savings (in 2020) and Costs per MtCO₂e - Data Sources: - **Quantification Methods:** - Key Assumptions: #### **Contribution to Other Goals** - Contribution to Long-term GHG Emission Goals (2035/2050): - Significant potential for long term GHG reduction savings 48 - Job Creation: - Reduced Fuel Import Expenditures: #### **Key Uncertainties** [Insert text here] ### **Additional Benefits and Costs** [Insert text here] #### **Feasibility Issues** [Insert text here] #### **Status of Group Approval** **TBD** #### **Level of Group Support** **TBD** #### **Barriers to Consensus** RCI-9. Identify GHG Emissions Impacts and Measures to Avoid, Minimize, or Mitigate them for Projects Requiring Government Review, and in Designing Government Rules and Regulations **Straw Proposal Development Status:** Input Provided by Volunteer Group for TWG Review *Based on RCI Catalog Options 7.7 and 7.8* #### **Mitigation Option Description** In 1997, then chairman of the Council for Environmental Quality, Kathleen McGinty drafted an interpretation of NEPA for federal agency heads finding that NEPA provides an 'appropriate and feasible mechanism for considering climate change drivers and consequences.²² This option would require identification of the net impacts on GHG emissions of new government rules and regulations, and would require the identification measures to avoid, minimize or mitigate increases in emissions due to the implementation of those rules and regulations in order to prevent the unintended consequences (e.g. increasing GHG emissions). This option would additionally require SEPA review to quantify GHG emissions and identify measures to avoid, minimize or mitigate emissions for state-funded and/or privately funded projects. #### **Mitigation Option Design** Potential elements of this option could include: - Requirements modeled after the program in place in Massachusetts: Private developers are required to estimate the greenhouse gases their large-scale projects will produce and reduce them with measures such as energy-efficient lighting, alternative fuels, or commuter shuttles. Large housing developments, office projects, and mixed-use developments that combine retail, industrial, and residential uses will be affected. Guidelines were scheduled for completion on July 1.²³ - A review of the energy intensity of the production of building materials used in projects, in order to provide incentives for use of low greenhouse gas building products. - Requirements that all new projects reduce GHG emissions. - A requirement that all government action could be reviewed for potential GHG impacts - Designing an efficient and low cost review process. - Encouraging true mitigation over off-site mitigation or offsets. - Requiring [SEPA] review to quantify GHG emissions and identify measures to avoid, minimize or mitigate emissions for projects requiring government review. McGinty, K.A., 1997. Draft memorandum: Guidance regarding consideration of global climatic change in environmental documents prepared pursuant to the National Environmental Policy Act. *Council for Environmental Quality*. See http://www.boston.com/news/local/articles/2007/04/22/mass_steps_up_climate_rules_for_developers/ - Add climate protection as a required element of local planning under the state Growth Management Act - Covered projects could include: - All state-funded or proposed projects - o Privately-funded projects that require a state air quality permit - o Privately-funded projects that result in more than 3000 vehicle-mile trips/year. Goals: Establish information disclosure requirements and data collection capacity enabling the state to quantify the impact of development on statewide GHG reduction targets to inform subsequent mitigation thresholds and target setting. Research in California, NYC and elsewhere has begun to quantify this impact. California estimates 10-15% of potential statewide reductions can be achieved through land use planning changes. New York City is estimating 15.6 million metric tons will be reduced through smart growth planning and design (accounting to approximately 30% of the City's total reduction strategy). Efficient community planning holds perhaps the greatest potential for future reductions of any mitigation strategy - Timing: King County's two-phase model, which requires a year of information disclosure and data collection prior to developing specific mitigation thresholds and targets, has great potential for replication statewide. - Coverage of parties: - Other: #### **Implementation Mechanisms** [Insert text here] ## **Related Policies/Programs in Place** **SEPA** King County is currently undertaking these kinds of reviews of the GHG emissions implications of projects. [CAT member Jim Lopez invited the TWG to correspond with his office for more information on this program] King County Executive Ron Sims announced in June of this year new county policy to track greenhouse gas impacts of development projects within county borders. County staff are currently developing an accounting methodology to quantify carbon impact for projects undergoing SEPA review, with the intent to have requirements in place by Fall of this year (asking for carbon emissions from proposed development). This "first tier" will not set thresholds or require that developers identify or conduct mitigation, but is simply disclosure or information gathering. The second tier of this policy will engage the County Council through the 2008 Comprehensive Plan Update. County Staff plan to include policy reaffirming the County's substantive authority to require GHG mitigation for projects meeting some threshold (as yet undefined) of climate impact, with the hope of implementation in early 2009. California's Attorney General brought a lawsuit against San Bernardino County, CA in April 2007, and just settled August 21: "The agreement, approved ... by the County Board of Supervisors, establishes a unique greenhouse gas reduction plan that will identify sources of emissions and set feasible reduction targets for the County. Under [the] agreement, the County will embark upon a thirty month public process aimed at cutting greenhouse gas emissions attributable to land use decisions and County government operations. The Greenhouse Gas Emissions Reduction Plan mandates the following: - An inventory of all known, or reasonably discoverable, sources of greenhouse gases in the County. - An inventory of the greenhouse gas emissions level in 1990, currently, and that projected for the year 2020. - A target for the reduction of emissions attributable to the county's discretionary land use decisions and its own internal government operations."^{24, 25} ## Type(s) of GHG Reductions [Insert text here] # Estimated GHG Savings (in 2020) and Costs per MtCO2e #### • Data Sources: **PlaNYC:** New York City PlaNYC 2030 estimates that attracting 900,000 new residents by 2030 will result in an avoided 15.6 million metric tons of CO2e through avoided sprawl. Methodology is not immediately apparent from the report but should be available through the New York City Office of Long Term Planning and Sustainability. **Center for Clean Air Policy (CCAP):** CCAP is working with the State of California (through the Land Use subgroup of their CAT process) to quantify benefits of land use decisions.²⁷ **Massachusetts:** Methodology under development by Massachusetts Department of Environmental Affairs (expected completion July 1, 2007 – uncertain of status). ²⁸ **San Bernardino County:** Very recent settlement with CA Attorney General's Office requires that County establishes targets for reducing sources of emissions "reasonably 51 - ²⁴ California Attorney General Press Release, "Brown Announces Landmark Global Warming Settlement," August ^{21, 2007,} http://ag.ca.gov/newsalerts/release.php?id=1453 San Bernardino Settlement Agreement, August 21, 2007, http://ag.ca.gov/cms_pdfs/press/2007-08- ²¹ San Bernardino settlement agreement.pdf http://www.nyc.gov/html/planyc2030/downloads/pdf/report_climate_change.pdf http://www.ccap.org/domestic/state.htm http://www.mass.gov/envir/ attributable to the County's discretionary land use decisions and the county's internal government operations..."²⁹ **CCAR:** In the process of developing a local government protocol for measurement, would likely attempt to quantify some of the impacts associated with development patterns. White paper available late Fall, Protocol target completion date: Summer 2008. - Quantification Methods: - Key Assumptions: #### **Contribution to Other Goals** - Contribution to Long-term GHG Emission Goals (2035/2050): - Job Creation: - Significant potential to increase consultant and government jobs. - Reduced Fuel Import Expenditures: ## **Key Uncertainties** [Insert text here] #### **Additional Benefits and Costs** [Insert text here] #### **Feasibility Issues** [Insert text here] #### **Status of Group Approval**
TBD #### **Level of Group Support** **TBD** #### **Barriers to Consensus** San Bernardino Settlement Agreement, August 21, 2007, http://ag.ca.gov/cms_pdfs/press/2007-08-21 San Bernardino settlement agreement.pdf # RCI-10. More Stringent Appliance/Equipment/ Lighting Efficiency Standards, and Appliance and Lighting Product Recycling and Design Straw Proposal Development Status: Input Provided by Volunteer Group for TWG Review Based on RCI Catalog Options 3.1 and 8.1 ## **Mitigation Option Description** This option is designed to advance policies and programs that result in improved life cycle benefits of new lighting, equipment, appliances and consumer electronic products, i.e., increase energy efficiency while also increasing product recycling and reuse and avoiding the *generation* of solid waste and *production and emissions of* toxic materials. <u>Background</u>: State and federal appliance standards passed since 2005 will produce about 0.08 MMtCO2e of GHG emissions savings toward Washington's 2020 target. Washington is one of 10 states that have standards for minimum energy efficiencies for specific products not covered by federal standards, or that go beyond federal standards. State standards fill gaps left by the federal government or encourage the adoption by manufacturers and others of higher standards than current federal standards. The 2005 Legislature adopted minimum efficiency standards for 12 products (four of which were subsequently supplanted by 2005 federal standards.) ³⁰ While there has been substantial progress in improving the energy efficiency of some consumer and commercial products, substantial energy conservation potential remains in products such as lighting, computers, servers and TVs³¹. And equally important to moving the consumer electronic product industry to increased energy efficiency is to reduce the life-cycle environmental and economic impacts of the next generation of lighting, appliances and other electronic and electrical equipment.³² The National Energy Policy Act of 2005 set new standards on 16 products, such as exit signs, compact fluorescent light bulbs and other products. And, at this writing, federal legislation under consideration will result in new efficiency standards for refrigerators, dishwashers, washing machines and dehumidifiers. Already, televisions account for about 4 percent of annual residential electricity use in the United States. By 2009, when half of all new TV sales are expected to be extended- or high-definition digital sets with big screens, according to NRDC, TV energy use will be about 50 percent higher than at present. Further, the move to high-definition TV requires sets to deliver more picture clarity, which uses more power. In addition, nationally it is anticipated that millions of old analog televisions will be no longer wanted and will need to be recycled. Using the best available technology, however, could reduce this new generation of big-screen TV "active mode" consumption by at least 25 percent, saving 10 billion kilowatt-hours per year, the NRDC estimates. In addition to chopping residential electric bills by \$1 billion, it would prevent 7 million extra tons of carbon dioxide from entering the atmosphere, according to NRDC. For example, transitioning from incandescent lighting to CFLs in the residential sector offers enormous energy savings potential, but the fact that there is no comprehensive and effective system in place for recycling or disposing of old CFLs to avoid mercury contamination creates a barrier to achieving the full potential of CFLs. ## [ORIGINAL TEXT FOLLOWS, FOR REFERENCE ONLY] The overall goal this option is to reduce the life-cycle greenhouse gas (and other) emissions "footprint" of products and their packaging, additional benefits include reduction of non-GHG pollutants, savings of materials. This option would include appliance and lighting products recycling; design issues including inclusion in products of "smart chips", design of products to make them easy to recycle, and designs to improve product longevity. [Appliance, equipment, and lighting efficiency standards reduce the market cost of energy efficiency improvements by incorporating technological advances into base appliance and equipment models, and lighting devices, thereby creating economies of scale. Appliance/equipment/lighting efficiency standards can be implemented at the state level for appliances and other devices not covered by federal standards, or where higher-than-federal standard efficiency requirements are appropriate³³. Regional co-ordination for state appliance/equipment/lighting standards can be used to avoid concerns that retailers or manufacturers may (1) resist supplying equipment to one state that has advanced standards or (2) focus sales of lower efficiency models on a state with less stringent efficiency standards.] # **Mitigation Option Design** To achieve economies of scale and market efficiency, many of the most promising mitigation options would be most effective if planned and developed regionally, through, for example, the Western Climate Initiative. Potential elements of this option could include: - Task CTED with analyzing the potential to apply efficiency standards to include lighting products. California is currently considering legislation requiring minimum lumen/watt standards for different categories of lighting as well as setting standards for reducing indoor residential lighting energy usage by no less than 50%, by 2018, as well as requiring a 25% reduction in commercial facilities by that same date. - Require manufacturers to reduce the levels of toxins in lighting products, such as mercury in fluorescents, consistent with requirements already in place in the European Union. - Require manufacturers to have an effective system in place for collecting and recycling endof-life bulbs that contain hazardous materials that is easy and convenient for the consumer. This can be done by including the cost of collection and recycling in the purchase price of the product and by working with retailers, recyclers, utilities, local governments and others to provide convenient collection opportunities. Manufacturer-designed and -financed systems would ensure the most efficient and effective collection programs. - Concurrent with policies and programs to ensure safe recycling and/or disposal of lighting products that contain lead and mercury, phase out incandescent lighting and set a date for a ban on them (with appropriate exemptions such as surgeries.) ³³ In recent years, Arizona, Oregon, and Washington, among other states, adopted state standards for several appliances; this led to the inclusion of standards for these appliances in the 2005 federal Energy bill. - With state, utility and private sector financial support, invest in research and development initiatives or incentive programs to accelerate the use of LED (light-emitting diode) and other least toxic, highly-efficient lighting technologies in all sectors. - Develop and implement minimum efficiency standards for televisions, digital TV adapters and other consumer electronic goods, working with US DOE or other parties. - Task CTED to review and analyze efficiency standards already adopted by California (products not covered by federal standards) for application in Washington including walk-in refrigerators and freezers, residential furnaces, dry-type transformers, commercial hot-food holding cabinets and other electronic and electrical equipment. - Require the preferential procurement of EnergyStarTM products if available (equipment, appliance or technology) if state funds are involved (e.g., state purchasing contracts, state grants or loans, etc.) - Create tax incentives to increase sales and use of EnergyStarTM appliances and equipment. - Work with manufacturers, retailers, recyclers and energy and solid waste utilities to ensure that all program elements promote and incorporate the recycling and/or materials reuse of old products. Energy efficient product promotional programs should be planned and coupled with corresponding recycling programs for the old products and new products being promoted. - Substantially increase the use of green electronic products and reduce solid waste by promoting EPEATTM through a consortium of state, local government and business procurement entities. EPEAT (*The Electronic Product Environmental Assessment Tool—see, for example, http://www.epeat.net/*) is a procurement tool and system in which manufacturers declare their products' conformance to a comprehensive set of environmental criteria in eight environmental performance categories including reduction/elimination of environmentally sensitive materials, material selection, design for end of life, product longevity/life cycle extension, energy efficiency, packaging and corporate performance. Provide state funding to promote EPEAT. - Require use of EPEAT in state and local government procurement. # [ORIGINAL TEXT FOLLOWS, FOR REFERENCE ONLY] - Consider including design of product/packaging for use as clean fuel if not reused or recycled. - Encouraging recycling and reuse in all products manufactured in WA. - Broadening target beyond appliances and lighting in order to reduce energy consumption related to product manufacturing, consumption and disposal through improved design, takeback programs, recycling, and reuse of products in Washington. - Consideration of mercury management from CFLs. - Consideration of impact on the lower income groups. - Encouraging national manufacturers to invest in improvements and help to create markets. - [Establishment and enforcement of higher-than-federal state-level appliance, equipment, and lighting standards (or standards for devices not covered by federal standards). - Providing support for the development and implementation of higher federal-level efficiency standards. - Joining with other
states in adopting higher standards. - Requiring high-efficiency appliances in new construction and retrofits. - Working with national and other manufacturers to encourage them to invest in the production of higher-efficiency appliances and equipment, and lighting devices, and to help to create markets for the higher-efficiency devices. - Consumer education programs to support this measure.] - Consideration of potential shifts in the use of toxic materials (such as mercury in fluorescent lamps) that could inhibit consumer demand for the efficient appliances and create costly disposal issues. For example, efficiency standards policies could be linked to manufacturer "takeback" requirements, toxics reduction standards, or incentives for development and use of non-toxic technologies. - Incentives or requirements/standards to reduce packaging and related GHG emissions. - Incentives for the use of recycled content in new products. - Incentives for switching to lower-energy manufacturing processes. - Consideration of "waste-to-fuel" issues in product and packaging design, with the goal of reducing the life-cycle greenhouse gas (and other) emissions "footprint" of products and their packaging by assuring that the product/packaging can be easily converted to a clean-burning fuel (if not reused or recycled) by eliminating impurities. #### Goals: - Consistent with an option *under consideration by the* Agriculture/Waste TWG (AW-3), the recycling/collection goal should be 50%; the capture rate for toxic, banned or highly recyclable products should be higher; ultimately, the state's interest should be 100% capture rate for these products. - The energy savings goal for improved lighting efficiency is 50% in the residential sector and 25% in the commercial sector. - Goals for the other products should be set based on an analysis of the baseline energy use and conservation potential, except for TVs. - The goal for TVs should be to improve energy use efficiency of the new generation of TVs by 25%. - Timing: - Coverage of parties: - Other: #### **Implementation Mechanisms** #### **Energy-Efficiency Funds** At present, there are no state energy efficiency funds available in Washington. #### **Energy Efficiency Tax Incentives** At present, there are no state energy efficiency tax incentives available in Washington. #### **Public Benefits Funds** At present, there are no public benefits funds for energy efficiency programs available in Washington. ## Related Policies/Programs in Place - In 2005 the Washington Legislature adopted minimum efficiency standards for 12 products (RCW 19.260.040). State standards for four of these products were eliminated in 2006 legislation after stricter federal standards were established for those products. 2006 legislation established minimum efficiency standards for 8 types of commercial appliances, heating/cooling and lighting equipment sold within the State - CTED is authorized by statute to update and recommend standards not covered by federal standards under the following conditions: if the alternative products are being produced, are cost effective, have equal or improved utility, and if the standards already exist in at least 2 states. - **Electronic Product Recycling Program**: The Washington State Legislature passed legislation in 2006 requiring the manufacturers of televisions, computers, laptops and monitors to establish and finance a system throughout the state for the collection and recycling of those products by January 1, 2009. - Washington State Environmentally Preferable Purchasing Policies: The State of Washington has a broad legislative and policy mandate for environmentally preferable purchasing activities by state agencies. This mandate is articulated in state executive orders, laws and rules. A list of key environmentally preferable purchasing executive orders, laws and rules for state agencies is below. - Executive Order 02-03, Sustainable Practices by State Agencies calls for each state agency to establish sustainability objectives and modify their purchasing practices in order to: - minimize energy and water use - shift to clean energy for both facilities and vehicles - shift to non-toxic, recycled and remanufactured materials in purchasing and construction - expand markets for environmentally preferable products and services - reduce and eliminate waste - Executive Order 05-01, Establishing Sustainability and Efficiency Goals for State Operations directs state agencies to achieve specific sustainability goals and required actions: - incorporate green building practices based on Leadership in Energy and Environmental Design (LEED) standards into new building construction and major remodeling projects - achieve a target of 20% reduction in petroleum use in the operation of state vehicles by 2009 - employ professional vehicle fleet management practices to achieve more fuel efficient and low emission agency fleets - significantly reduce office paper purchases by 30%, increase the purchase of environmentally preferable paper to at least 50%, recycle all used office paper, and increase the purchase of post-consumer recycled janitorial products - reduce energy purchases by 10% from FY 2003 to 2009 - Executive Order 04-01, Persistent Toxic Chemicals, directs state agencies to take steps to reduce persistent toxic chemicals in Washington State's environment. - General Administration (GA) is to make available for purchase products that do not contain persistent toxic chemicals. If such products are not available, products with the least amount of persistent toxic chemicals shall be made available. - Each state agency is to adopt measures to reduce purchase of goods that contain persistent toxic chemicals. Agencies are directed to report annually on progress in meeting these measures. - Department of Ecology is to establish through rules, specific criteria for use in identifying persistent toxic chemicals. - Executive Order 07-02 Washington Climate Change Challenge establishes the goal of reducing greenhouse gas emission in the state of Washington to: 1990 levels by 2020 and to 25% below 1990 levels by 2035. - o RCW 43.19 GA's enabling legislation, provides a broad legislative basis for state purchases of recycled content and energy saving products. It also provides the flexibility to allow GA to award state contracts based on environmental considerations. It establishes that factors beyond price, including past performance and life cycle costing, are to be used in determining the "lowest responsible bidder." - o RCW 43.19A includes goals requirements to increase the purchase and use of recycled content products. RCW 43.19.530A requires a chain of custody record that documents to whom the products were initially delivered through to the end use manufacturer. - Chapter 39.35D RCW High-performance public buildings, State-owned buildings and schools shall adopt recognized standards for high-performance public buildings and allowing flexible methods and choices in how to achieve those standards. Public agencies and school districts shall document costs and savings to monitor this program and ensure that economic, community, and environmental goals are achieved each year. - Chapter 70.95M RCW The Mercury Education Reduction Act (MERA) mandates General Administration to give priority and preference to the purchase of equipment, supplies, and other products that contain no mercury-added compounds or components. 59 ## **Type(s) of GHG Reductions** [Insert text here] #### Estimated GHG Savings (in 2020) and Costs per MtCO₂e - Data Sources: - Quantification Methods: - Key Assumptions: #### **Contribution to Other Goals** - Contribution to Long-term GHG Emission Goals (2035/2050): - Job Creation: - Reduced Fuel Import Expenditures: #### **Key Uncertainties** [Insert text here] #### **Additional Benefits and Costs** [Insert text here] #### **Feasibility Issues** [Insert text here] ## **Status of Group Approval** **TBD** # **Level of Group Support** **TBD** #### **Barriers to Consensus** ## RCI-11. Policies and/or Programs Specifically Targeting Non-energy GHG Emissions **Straw Proposal Development Status:** Input Provided by Volunteer Group for TWG Review *Based on RCI Catalog Option 7.4* ## **Mitigation Option Description** GHG emissions from RCI sources not directly associated with energy use are emitted in relatively small quantities but have proportionately much larger impacts on climate. The potency of sources are measured by a global warming potential (GWP), - a measure of the potential impact of different gases on climate in terms of CO₂-equivalent. Below is a chart that shows the GWP for frequently emitted GHG. | Greenhouse gas | Global Warming Potential (relative to CO2) | |---------------------------|---| | Carbon dioxide (CO2) | 1 | | Methane (CH4) | 23 | | Nitrous oxide | <mark>296</mark> | | Hydrofluorocarbons (HFCs) | 120 -12,000 | | Perfluorocarbons (PFCs) | 5,700 – 11,900 | | Sulfur hexafluoride (SF6) | 22,200 | Third Annual Assessment, IPCC 2001 The sources of GHG emissions generally fall into five categories: - CO₂ from non-fossil fuel combustion sources. One percent of Washington's CO₂ emissions come from the non-energy aspects of aluminum and cement production. - Methane (CH₄) from landfills, coalmines, oil and gas operations and agriculture accounts for less than 3% of Washington's emissions currently, but are projected to increase slightly (less than 1 MMtCO2e from 2005 to 2020.) Mitigation policies addressing CH₄ are addressed by the Agriculture TWG. - Agricultural activities such as manure management, fertilizer use, and livestock (enteric fermentation) result in methane and nitrous oxide emissions that account for 6% of State GHG emissions in 2005. These emissions are projected to decrease by about 0.6 MMtCO₂e. Mitigation strategies are addressed in the Agriculture and Waste TWG. - Hydrofluorocarbon (HFCs) and
perfluorocompounds (PFCs) also known as Ozone Depleting Substitutes (ODS), are potent greenhouse gases that comprise a small but growing source of GHG emissions in Washington state and nationally. ODS are used in refrigeration, air conditioning and in heat pumps. "Even low amounts of HFC and PFC emissions, for example, from leaks and other releases associated with normal use of the products, can lead to high GHG emissions on a carbon-equivalent basis." Washington's ODS emissions are expected to increase at an average rate of 6.1% per year from 2000 to 2020. The GWP of HFC-134a, one example of a HFC is 16,500 times more potent than CO_2 over a 100-year period. • Sulfur hexafluoride (SF₆) is a GHG used for insulation in the electricity industry and is emitted mostly when electric power transmission and distribution systems malfunction. According to the Intergovernmental Panel on Climate Change, SF₆ is the most potent greenhouse gas ever evaluated. It has a global warming potential of *22,200 times CO*₂ over a 100-year period. SF₆ emissions have declined because of voluntary industry action in the 1990s. A continuing decline will depend on continued efforts of the electric industry to reduce these emissions. #### [ORIGINAL TEXT FOLLOWS, FOR REFERENCE ONLY] [A combination of voluntary agreements with industries and of new specifications for key equipment can be used to reduce the emissions of process gases that have high global warming potentials (GWP, a measure of the potential impact of different gases on climate in terms of "CO₂-equivalent").] ## **Mitigation Option Design** The mitigation options for this policy span across different sectors and industries. A combination of voluntary reduction, requirements for key equipment, education campaigns and prescriptive measures can be used. Reduction strategies are divided by the industry and source targeted for mitigation. #### **Aluminum and Cement Production** The cement and aluminum industry are the highest emitters of non-energy CO₂. Large quantities of CO₂ are emitted during the production of lime, the key ingredient in cement. GHG emissions from these industries can be reduced in various ways, and can make a large dent in overall CO₂ reduction. Key elements of this option include: - Goals: Reduce CO₂ emissions by the cement and aluminum industries. A 10 percent reduction in CO₂ emissions per ton of cementitious product produced or sold from a 1990 baseline by 2020. - **Timing:** Implement policy in a reasonable timeframe to allow timely reductions. - Coverage of parties: All industrial sources currently monitored by the GHG inventory, and emit over 100,000 metric tons of CO₂e, are covered by this mitigation option. - Other: #### **HFCs and PFCs** Efforts to reduce the use of ODS products are necessary to decrease the potential growth of the powerful greenhouse gases. Refrigeration and mobile air conditioning (MAC) release the highest amounts of ODS. HFCs are also found in compressed gas computer keyboard canisters, which are 100% HFC-134a, and in novelty aerosols such as silly string. Key elements of state action should include: - Overall provisions - Provisions for Mobile Air Conditioning - Provisions for refrigeration, air condition and heat pump equipment - Goals: Reduce the use of HFCs and PFCs - **Timing:** Implement policy in a reasonable timeframe to allow timely reductions. - Coverage of parties: Individuals and industry are both covered in this mitigation strategy. - Other: #### [ORIGINAL TEXT FOLLOWS, FOR REFERENCE ONLY] Potential elements of this option could include: - Consideration of performance standards as an alternative to more prescriptive standards. Standards to require inclusion of fly ash in cement, and encourage use of innovative low-GHG cement fillers. - [Increasing the use of blended cement (substituting fly ash or other pozzolans for clinker—the chief ingredient of cement—reduces CO_2 emissions associated with clinker production from limestone). - Promotion of and funding for leak reduction/capture, recovery and recycling of high-GWP process gases. - Promotion of and funding for process changes/optimization that reduce GHG emissions. - Use of alternative gases (other HFCs, hydrocarbon coolants/refrigerants, etc.) with lower GWPs in key applications. - Reorganizing production to reduce/use wastes, reduce inputs. - Support for voluntary programs and public-private partnerships.] - Support for DOT and other government agencies' adoption of performance standards as an alternative to more prescriptive standards where applicable--for example, for building materials production processes that emit carbon, base emissions standards on the structural capacity of a product, rather than its mass alone—so manufacturers have the flexibility to shift to more low-energy products and encourage substitution. This could include using blast-furnace slag [as an alternative to cement?] in road construction. - Requirements that cement users (or contractors working under building permits) have a certain percentage of fly ash or other material in the concrete they pour. This reduces the amount of cement used. - Financial and/or market incentives to change the way cement is made (for example, where appropriate to switch to environmentally innovative fillers such as sewage). - Goals: - Timing: - Coverage of parties: - Other: #### **Implementation Mechanisms** <u>Cement Production:</u> In addition to measures that reduce fossil fuel energy use per unit of production in RCI-2, the following are recommended: - Work with the cement industry to promote the development of cement-production techniques that require a lower proportion of calcined materials, thereby reducing CO2 emissions per unit of product. - Ensure that State construction specifications (DOT, GSA, etc) support the U.S. cement industry's support for changes to the standard recipe for portland cement developed by the American Society for Testing and Materials (ASTM) to allow intergrinding some uncalcined limestone into the finished product to reduce the proportion of clinker in the finished product. Acceptance of such a change would result in a significant reduction of CO2 emissions per unit of cement. - Ensure that state procument officials and policies support the harmonization of ASTM and AASHTO Cement Standards³⁴ - Develop state procurement standards to increase use of climate friendly cement. - Promote the life-cycle benefits of concrete use to architects, builders, state and federal procurement officials. - Consider tax benefits and other incentives for applications of concrete products for paving and building that demonstrate positive life-cycle attributes. - Participate in ongoing programs such as the U.S. Green Building Council, DOE's Industrial Technologies Program, and ENERGY STAR. #### **HFCs and PFCs** - Restrict the use of ODS in situations where viable alternatives are available. - As part of the Western Climate Initiative, negotiate a cap on HFCs and PFCs. A cap would provide some security against runaway emissions, and would allow flexibility for actions beneath the capped level. - As part of the Western Climate Initiative, develop model legislation to prohibit: - Windows containing fluorinated gases - One component foams containing fluorinated gases ³⁴ Some states use a portland cement standard developed by the American Association of State Highway Transportation Organizations, rather than the ASTM standard. After the ASTM standard is improved, the AASHTO standard should be changed to conform. - Novelty aerosols containing fluorinated gases - Non-confined direct-evaporation systems which use ODS gases as the refrigerant - Create state procurement standards that declare a presumption against the use of HFCs and PFCs; they should be eliminated when technically feasible. The standards can serve as models for local governments, business and institutions. - Launch a campaign aimed primarily at consumers and secondarily at retailers of personal technical products containing ODS. This option has the goal to encourage distributors and manufacturers to phase out the use of consumer aerosol ODS products. #### Mobile Air Conditioning - Adopt a policy that adds any refrigerant with a GWP of 150 or more to the EPA phaseout schedule for refrigerants in mobile air conditioners (MAC). As a party to the Montreal Protocol, the United States has already agreed to meet Protocol limits by phasing-out HCFC-141b, HCFC-142b and HCFC-22, the most damaging of the HCFCs. WA can use current EPA regulations to model extended product phase out. - Join with the Society of Automotive Engineers (SAE), the European Union, and the California Air Resources Board to adopt common testing and engineering standards for existing MAC. - Ensure that state fleet managers follow the recommendations of EPA's Mobile Air Conditioning Climate Protection Partnership. Work with local governments, Clean Air Agencies and the Clean Cities Coalition to promote the Partnership. The Partnership recommends: - More efficient refrigerant recovery and more accurate charging equipment and procedures. - Improved leak detection (tools and procedures). - o Mandatory repair of A/C system leaks before system recharge. - Quality components; correct installation and connections. - Reduction of emissions from refrigerant container heels. - Elimination of DIY recharge of leaking systems. - O Better compliance with recovery requirements and more efficient recovery at vehicle end of life. - Restricting sale of refrigerant only to certified technicians. #### Commercial refrigeration, air condition and heat pump equipment - Consider adopting regulations similar to those in the EU, specifically: - Regulate the containment, leakage, use, recovery of ODS, using labeling, reporting, prohibition, and training for servicing personnel and operators. - O All owners of equipment and fire protection systems containing 300 kilograms or more of fluorinated gas are
required to install leak detection systems. - For systems less than 300 kilograms, appliances will be checked for leaks once a year, or every six months depending on the amount of gas. # SF_6 - Consider whether utility SF₆ control/management should move from voluntary initiatives to mandatory. For example, as part of the annual fuel mix disclosure requirements of RCW.29A, utilities could be required to report annual SF₆ emissions and current policies and programs to reduce them. - Urge all state electric utilities to join the EPA SF₆ Reduction Partnership for Electric Power Systems. #### Related Policies/Programs in Place #### **Aluminum and Cement Production** Actions directed at the Aluminum and Cement production industry reductions can model the Environmental Protection Agency's voluntary aluminum industrial partnership (VAIP). Companies that participate in this program agree to report GHG emissions to create a baseline and report on estimated reductions. This program also monitors PFCs. The state mitigation option would expand this program, make it mandatory and add standards and/or requirements above. There is a National Performance Standard for Cement production based on the performance of the maximum achievable control technology (MACT) and standards for hydrocarbons and hazardous air pollutants. The state mitigation option could build upon this program and add standards and requirements for GHG pollutants. ### **HFCs and PFCs** The European Commission has a directive to reduce HFCs, PFCs and sulfur hexafluoride (Fgases). The directive bans all F-gases with a GWP of more than 150 for new models. The Commission also regulates commercial refrigeration though reduction, leakage control and restrictions on F-gases use. # SF₆ The EPA administers SF6 Emission reduction partnership for electric power systems. The partnership works to identify and implement cost effective solutions to reduce SF6 emissions. Eighty-one utilities participate in the program, including [text not yet provided]. # **Type(s) of GHG Reductions** # CO₂, HFC, PFC and SF₆. # Estimated GHG Savings (in 2020) and Costs per MtCO2e - Data Sources: - Quantification Methods: - Key Assumptions: #### **Contribution to Other Goals** - Contribution to Long-term GHG Emission Goals (2035/2050): - Job Creation: - Reduced Fuel Import Expenditures: ## **Key Uncertainties** [Insert text here] ## **Additional Benefits and Costs** [Insert text here] #### **Feasibility Issues** [Insert text here] ## **Status of Group Approval** **TBD** #### **Level of Group Support** **TBD** # **Barriers to Consensus**